
Neural Prior for Trajectory Estimation

Chaoyang Wang1 Xueqian Li2,3 Jhony Kaesemodel Pontes3 Simon Lucey12

1Carnegie Mellon University 2University of Adelaide 3Argo AI
chaoyanw@cs.cmu.edu {xueqian.li, simon.lucey}@adelaide.edu.au jpontes@argo.ai

1. Additional discussions

1.1. Difference to neural scene flow prior [5]

NSP [5] only models pairwise scene flows, while this
paper models long-term correspondences in the form of 3D
trajectories. To model the long-term temporal prior, our pa-
per assumes that all trajectories within an input sequence
are compressible by a bottleneck decoder. The compress-
ibility assumption is motivated by previous trajectory-based
NRSfM methods using rank/subspace constraints (see Sec.
3.1), which is not applicable to NSP as scene flows are al-
ready low dimensional (=3).

The proposed trajectory field also significantly improves
efficiency when enforcing long-term consistency to reduce
drift for scene flow integration. Consider the evaluation of
long-term cyclic consistency loss with T frame intervals (T
is large). Using NSP would require T steps of forward in-
tegration and then T steps of backward integration, which
results in evaluating the MLP for 2T times. This is compu-
tationally intractable during iterative optimization when T
is large. In comparison, the proposed trajectory field only
needs 2 MLP evaluations, as the MLP directly outputs all
positions at different frames.

1.2. Difference to Neural NRSfM [7]

Neural NRSfM [7] is a shape-based approach, using a
decoder to model shapes (represented as a set of 3D points)
rather than trajectories. For dense NRSfM (# points per
frame >> # frames), such formulation is less efficient.
Consider just the output layer of the decoder, [7] requires
3P × K parameters, where P refers to number of points
per frame, and K is the layer width (=32 by default). This
means for the synthetic face experiment (Tab.2) with 99
frames and P = 28, 000, the output layer alone for [7] re-
quires 2.7m #params, while our whole model requires only
around 0.4m #params, since the size of our model is only
proportional to #frames. In practise, our method also opti-
mizes much faster (∼15 mins v.s. 3+ hrs on a single GPU).

1.3. Societal impact

Though our method is not data-driven, the data collected
for use in our method might still contain privacy issues. Po-
tential malicious or unintended uses of surveillance are also
possible.

2. NRSfM implementation details
2.1. Hyperparameters

Cost function. Thoroughout our evaluations, we set λ1 =
0.01 and λ2 = 0.01.

Network architecture. (i) the trajectory weight decoder
fα is a MLP with ReLU as the non-linear activation layers.
The number of hidden units for each layers are 4(for sparse
NRSfM) / 3(for dense NRSfM), 128, 128, 256. These num-
bers were picked heuristically without tuning. (ii) fφ is
modeled as a 5 layer MLP with each layer having 128 hid-
den units. (iii) fτ is a MLP with 3 hidden layers, each with
128 hidden units. (iii) fz is also a 5 layer MLP with 128 hid-
den units per layer. In addition, the 2D inputs are embedded
using positional encoding [6] with 5 frequencies.

2.2. Optimization details

Bilevel optimization. Due to the orthogonality constraint
of the camera matrices Mt’s, directly minimizing Eq (4) in
Sec. 5.1 using gradient descent does not converge to good
solutions. Instead, we follow the bilevel optimization ap-
proach proposed by Wang et al. [9], i.e.

min
θτ ,Φ,z

min
M

C2D recon. + λ1Csmooth traj. + λ2∥Φ∥22, (1)

where the upper and lower optimization share the same
cost function, but are optimized with respect to different
variables. For the lower level problem, we minimize the
cost with respect to the camera matrices Mt’s. Due to the
terms Ctraj. smooth and ∥Φ∥22 do not dependent on Mt’s, the
lower level problem in fact is minM C2D recon., which is an
Orthographic-N-point(OnP) problem. Various efficient ge-
ometric or algebraic OnP solvers were proposed in litera-

1

ture (see survey [8]). In this work, we derived a simple al-
gebraic solution inspired from the initialization step of the
algorithm of Green and Gower [3].

A simple OnP solver. First, for each frame t, we min-
imize C2D recon. = ∥Wt − MtSt∥F as a least square prob-
lem, dropping the orthogonal constraint of Mt. Then, given
the least square solution M̃t = WS†, we perform met-
ric upgrade to project M̃t to an orthogonal matrix, i.e.
M∗

t = UVT , where U, V are matrices from svd(M̃t). We
implemented the above procedure using modern autograd
packages, thus our OnP solver is a differentiable operator,
which takes input from W, S and outputs M. Finally, we
note that this simple OnP solver does not work for cases
where 3D points are coplanar. Luckily, coplanarity is rare
in real dynamic scenes, and never occurred in our experi-
ments.

Single level reduction. With the differentiable OnP
solver, we reduce the bilevel optimization to a single level
optimization problem, i.e.

min
θτ ,Φ,z

∥W −M∗(W,S)S∥F + α1Csmooth traj. + α2∥Φ∥22,
(2)

where M∗(W,S) denotes the OnP solution conditioned on
the inputs W, S. This single level objective can then be
solved using gradient descent.

Warm up with low-rank prior. We find that directly per-
forming gradient descent with the above cost is sensitive
to random seeds and sometimes diverges to poor solutions.
To reduce variance of solutions, we develop the following
trick. In the first 100 gradient descent iterations, we aug-
ment the cost with an additional cost, i.e. ∥S∥∗, which en-
forces the estimated shape S to have lower rank. This low-
rank cost is only used as an initialization step, and it is re-
moved from the objective after 100 iterations. On the other
hand, keeping ∥S∥∗ as a permanent cost term would sig-
nificantly degrade accuracy, as it strictly enforces the final
solution to be low rank.

Optimization parameters. We use Adam optimizer with
initial learning rate set as 0.001. We then linearly decrease
learning when optimization progresses. For sparse NRSfM
sequences, the learning rate is decreased by a factor of 0.9
every 500 iterations, and train for a total of 10k iterations;
for dense NRSfM sequences, the learning rate is decreased
by 0.9 every 2k iterations, and runs 100k iterations.

2.3. PUAL + NTP details

In Sec. 5.2, we combined PUAL [9] with our approach
and observed improved accuracy on the benchmark. Since

PUAL is a shape-based approach assuming the aligned 3D
shapes are compressible with a decoder, the combination of
NTP with PAUL is enforcing the bottleneck neural prior on
both 3D trajectories and shapes. The combined optimiza-
tion cost is

∥S′ −RSNT∥F + ∥S′ −RSNS∥F
+α1Csmooth traj. + α2(∥ΦNT∥22 + ∥ΦNS∥22),

(3)

where ΦNT, ΦNS are concatenation of trajectory codes and
shape codes, SNT and SNS denotes 3D shape matrices pro-
duced by the trajectory decoder and the shape decoder re-
spectively. R = blockdiag(R1,R2, . . . ,RF) ∈ R3F×3F

is a block diagonal matrix stacking rotation matrices Rt ∈
SO(3) for each frame. And S′ denotes the 3D shapes at
camera frame, formed by concatenating input 2D observa-
tions W and unknown depth values Z ∈ RF×P , i.e.

S′ =

w1

z1
...

wF

zF

3F×P

, wt ∈ R2×P , zt ∈ R1×P , (4)

where wt are the 2D measurement from t-th frame, and zt
denotes the unknown depth values at t-th frame.

The purpose of minimizing ∥S′ − RSNT∥F + ∥S′ −
RSNS∥F is to enforce the estimated shapes from the trajec-
tory decoder, i.e. SNT and the ones from the shape decoder,
i.e. SNS not only agree with the input 2D measurement, but
also are consistent with each other.

To optimize the cost function, we adapt the same bilevel
optimization strategy as described previously – for lower
level problem, R, Z are solved in closed form, and the
solver is treated as a differentiable operation with W, SNT,
SNS as inputs. Finally, the bilevel problem is reduced to a
single level one and optimized with gradient descent.

2.4. Baseline method details

The baseline methods mentioned in Table 1, i.e. smooth
traj. and low rank, are described as follow.

Smooth traj. In this baseline, we dropped the neural tra-
jectory prior and only use the trajectory smoothness con-
straint. Thus the difference between this baseline to the
proposed method is, the entire shape matrix S in Eq (4) is
treated as variables to optimize, instead of forming it using
the output from the trajectory decoder.

Low rank. We replace the multi-layer trajectory decoder
with a single layer decoder, thus the trajectories are now
formed as a linear combination of trajectory bases. By fur-
ther limiting the bottleneck dimension, this approach is ex-
plicitly limiting the rank of its 3D reconstruction. In our

experiment, we tried rank=2, 4, 8, 12, 16, 32, 64, 128, and
reported results using the setting (i.e. rank=12) which gave
the best overall accuracy.

3. Lidar scene flow integration details
3.1. Details of NTP

Network architecture. For a fair comparison to Li et
al. [5], we adopt their network architecture to model the tra-
jectory code field fφ. More specifically, fφ is a 7 layer MLP
with ReLU activations, and the layer width is 128. The rest
of the architecture is kept the same as in the NRSfM exper-
iments.

Encoding temporal input. We found that directly input
time t to fφ is insufficient and the optimization is slow to
converge. Instead, we embedded t using cosine encoding,
i.e. {cos(πt), cos(2πt), . . . , cos(2Nπt)}, where the number
of frequencies N = log2 F . We also experimented with
a learnable embedding strategy, which optimizes a 8-dim
code vector to encode each time step t. We found that this
strategy produced similar result to the cosine encoding ap-
proach. For simplicity, we chose to use the cosine encoding.

Optimization details. We use Adam optimizer with ini-
tial learning rate = 0.001. For each iteration, we randomly
sample 4 out of 25 frames to evaluate the loss and perform
backpropagation. The learning rate is reduced by a factor of
0.5 every 500 iterations, and the total number of iterations
is 2000 per sequence (with 25 frames).

3.2. Baseline details

Euler integration. Given the estimated pairwise scene
flow fields ft�t+1,∀t ∈ [1, F−1] from NSFP [5], the trajec-
tory of a point p = (x, y, z) at the first frame can be traced
through forward integration of the scene flows. Specifically,
the points τt on the trajectory is calculated as:

1. τ1 = (x, y, z).

2. τt+1 = ft�t+1(τt) + τt, ∀t ∈ [1, F − 1].

As shown above, estimating trajectories by integrating
scene flow fields requires F − 1 times of forward propa-
gation of the neural networks ft�t+1.

KNN integration. Due to the scene flow estimation from
learning-based methods such as FlowStep3D [4] is sparse,
we need to first interpolate the flows so as to perform inte-
gration. Denote the output flow vectors from FlowStep3D at
frame t as {vt,1,vt,2, . . . ,vt,P }, where P denotes the num-
ber of points at frame t, and vt,i is the flow for the i-th point
pi. We use nearest neighbor interpolation to interpolate
flows, i.e. ft�t+1(p) = vt,i∗ , i∗ = argmini ∥p − pt,i∥2.

Table 1. Ablation of number of frequencies for positional en-
coding. We vary the number of frequencies for the positional en-
coding of fφ in the dense NRSfM experiment. Numbers are re-
ported as the normalized mean 3D error. We find that increasing
the number of frequencies marginally increases reconstruction er-
ror for the traj. B sequence. Overall our method is not sensitive to
different settings of positional encoding.

freqs 0 (w/o pe) 2 3 4 5 6
traj. A 0.0324 0.0322 0.0332 0.0342 0.0324 0.0326
traj. B 0.0350 0.0357 0.0361 0.0364 0.0407 0.0386

Given the interpolated flows ft�t+1, we then perform Euler
integration as described above.

4. Additional evaluations
4.1. Ablations of positional encoding for dense

NRSfM

We evaluated different number of frequencies for the po-
sitional encoding for fφ. As shown in Tab. 1, we found that
increasing the number of frequencies increases 3D error for
the traj. B sequence, though the difference is marginal. The
accuracy for the traj. B sequence is not affected. Overall
our method is not sensitive to the number of frequencies for
positional encoding, and it performs best without positional
encoding.

4.2. Additional lidar scene flow integration results

Ego vs. Ego motion free The motion of points in a lidar
sequence comes from a combination of object motions (e.g.,
cars, pedestrians, etc.) and ego motions of the autonomous
vehicle (AV). Removing the ego motions may help sim-
plify the problem and potentially improve the performance.
Therefore, we investigated the effect of removing ego mo-
tions from the input data for our baselines. As shown in
Tab. 2, our method consistently outperformed baselines re-
gardless of their input data containing ego motion.

Evaluation on extremely sparse point clouds. In addi-
tion, we evaluated the methods using the nuScenes dataset.
We extracted the first 25 frames from each of the 150 valida-
tion sequences. We notice the point clouds from nuScenes
are extremely sparse—the number of points ranges from 2k
to 7k. As a result, the results for all compared methods are
noisy. We provide the quantitative results in Tab. 2.

Visual results. We provide more visual results for trajec-
tory estimation, point cloud densification in supp.html.

References
[1] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,

Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-

Table 2. Trajectory accuracy for data with or without ego motions on Argoverse and nuScenes. We report Chamfer distance results
for all three methods with different integration strategies. ✓ is the original dataset with ego motions of the AV, and ✗ means that we
removed the ego motion from the dataset. ↑ means the higher the better, and ↓ means the lower the better. Our method achieved relatively
low errors despite the ego motions included in the scene.

Argoverse [2] nuScenes [1]
ego

motions
Acc. 0.5

(%)↑
Acc. 1
(%)↑

Out.
(%)↓

cd-1
(m)↓

cd-10
(m)↓

cd-24
(m)↓

ego
motions

Acc. 0.5
(%)↑

Acc. 1
(%)↑

Out.
(%)↓

cd-1
(m)↓

cd-10
(m)↓

cd-24
(m)↓

FlowStep3D [4]
(KNN Int.)

✓ 5.25 6.81 87.20 0.23 4.27 12.68 ✓ 19.12 24.90 66.48 0.38 3.16 11.34
✗ 5.18 6.78 87.22 0.20 3.97 13.94 ✗ 18.57 23.70 67.24 0.37 3.16 12.60

NSFP [5]
(KNN Int.)

✓ 45.18 59.86 28.90 0.11 5.35 21.30 ✓ 35.10 51.88 35.48 0.26 4.24 15.35
✗ 43.40 53.54 37.91 0.08 5.06 19.23 ✗ 34.84 52.18 33.74 0.23 3.41 12.15

NSFP [5]
(Euler Int.)

✓ 45.28 59.52 29.33 0.10 4.43 14.09 ✓ 35.09 51.83 35.49 0.46 4.03 16.03
✗ 43.15 53.14 38.08 0.09 4.17 11.74 ✗ 34.86 52.17 33.73 0.44 3.38 13.36

NTP (Ours) ✓ 52.28 69.88 20.95 0.08 2.41 9.77 ✓ 34.92 53.21 32.90 0.40 2.70 13.81

ancarlo Baldan, and Oscar Beijbom. nuScenes: A multi-
modal dataset for autonomous driving. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 11621–11631, 2020. 4

[2] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet
Singh, Slawomir Bak, Andrew Hartnett, De Wang, Peter Carr,
Simon Lucey, Deva Ramanan, et al. Argoverse: 3D track-
ing and forecasting with rich maps. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 8748–8757, 2019. 4

[3] John C Gower, Garmt B Dijksterhuis, et al. Procrustes prob-
lems, volume 30. Oxford University Press on Demand, 2004.
2

[4] Yair Kittenplon, Yonina C Eldar, and Dan Raviv. FlowStep3D:
Model unrolling for self-supervised scene flow estimation. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4114–4123, 2021. 3, 4

[5] Xueqian Li, Jhony Kaesemodel Pontes, and Simon Lucey.
Neural scene flow prior. In Neural Information Processing
Systems (NeurIPS), 2021. 1, 3, 4

[6] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view synthe-
sis. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 405–421. Springer, 2020. 1

[7] Vikramjit Sidhu, Edgar Tretschk, Vladislav Golyanik, Anto-
nio Agudo, and Christian Theobalt. Neural dense non-rigid
structure from motion with latent space constraints. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 2020. 1

[8] Carsten Steger. Algorithms for the orthographic-n-point prob-
lem. Journal of Mathematical Imaging and Vision, 60(2):246–
266, 2018. 2

[9] Chaoyang Wang and Simon Lucey. PAUL: Procrustean au-
toencoder for unsupervised lifting. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 434–443, 2021. 1, 2

	. Additional discussions
	. Difference to neural scene flow prior li2021neural
	. Difference to Neural NRSfM Sidhu2020
	. Societal impact

	. NRSfM implementation details
	. Hyperparameters
	. Optimization details
	. PUAL + NTP details
	. Baseline method details

	. Lidar scene flow integration details
	. Details of NTP
	. Baseline details

	. Additional evaluations
	. Ablations of positional encoding for dense NRSfM
	. Additional lidar scene flow integration results

