
Supplementary Material for “Noisy Boundaries: Lemon or Lemonade for
Semi-supervised Instance Segmentation?”

1. Implementation Details

We provide more implementation details in this section.

1.1. Training Details

Cityscapes [3]. For all experiments on the cityscapes
dataset, we train the model for 64 epochs (about 24,000 it-
erations) and decay the learning rate after the 56th epoch
(about the 21,000th iteration). We set the initial learning
rate to 0.01 and adopt a mini-batch of 8 images. The input
images are resized to have their shorter sides in [800,1024]
and their longer sides less than or equal to 2048. In the test
phase, we do not use any data augmentation strategy, only
resizing the shorter sides of images to 1024. For the fine
→ coarse → fine experiment, we first train our model for
48 epochs with fine-annotated images, then learning with
coarse-annotated images for 8 epochs, finally finetuning
with fine-annotated images for the final 8 epochs.

COCO [7]. We adopt the usual 1x schedule for experi-
ments on the COCO dataset, where we train the model for
12 epochs and decay the learning rate after the 8th and the
11th epoch. The mini-batch size is set to 16. For the 100%
setting, we use the 3x schedule for the better performance.

BDD100K [14]. For the BDD100K dataset, the model
is trained for 12 epochs, where the learning rate is decayed
after the 8th and the 11th epoch. The initial learning rate is
set to 0.02 and the mini-batch size is 16. Input images are
resized in the same way as Cityscapes. The segmentation
results are evaluated in the same way as the COCO dataset.

For comparison with existing semi-supervised object de-
tection or semantic segmentation methods, we simple ex-
tend them. Specifically, the classification and regression
branch of Mask RCNN can be regarded as an object de-
tection structure, so we apply semi-supervised object de-
tection methods on them. The mask branch is supervised
with labeled images and unlabeled ones with pseudo labels.
Also, the mask branch can be regarded as a semantic seg-
mentation structure, so we apply semi-supervised semantic
segmentation methods on it.

1.2. Augmentation Details

Weak augmentation. In the pseudo label generation
step, we conduct data augmentation for images when pro-
ducing instance segmentation masks. We refer to this as
weak augmentation. Specifically, it includes scaling and
horizontal flipping. For the scaling operation, images from
the COCO dataset are resized to have their short sides in
[400,1200] with a stepsize of 100. For the Cityscapes and
the BDD100K dataset, the short sides of images are scaled
in [624,1424] with a 100 stepsize.

Strong augmentation. In the student model training
step, we apply strong data augmentation for images. Be-
sides resizing and random flipping, which are adopted in
the usual training, we use color transformation and cutout.

For the color transformation, the specific operation is
randomly picked from the follows:

• Identity: no changes and return the original image.
• Gaussian blur: the standard deviation is randomly

pickled from (0,3)
• Average blur: the kernel size is randomly selected

from (2,7)
• Sharpen: the blending factor (the visibility of the

sharpened image) is randomly taken from (0,1) and the
lightness is from (0.75,1.5)

• Gaussian noise: the standard deviation of the noise is
randomly sampled from (0,0.05*255) and the mean of
the noise is 0

• Invert: invert the color with a 5% probability
• Multiplicative noise: the multiplier is randomly taken

from (0.5,1.5)
• Random Brightness Contrast: the brightness factor is

randomly taken from (0.1,0.3) and the contrast factor
is from (0.1,0.3)

For the cutout transform, we randomly cutout square
patches from the original images and fill the zero pixel. The
size of the patches is randomly picked from the (0,0.2) ratio
of the image short sides, and the number of the patches is
randomly taken from (1,5).



Table 1: Boundary AP Results on Cityscapes with a
varying percentage of labeled images. † denotes adopting
the same data augmentation in the semi-supervised training.
§ denotes using focal loss for the detection branch.

Method 5% 10% 20% 30% 40%
supervised 2.6 4.9 6.3 8.2 9.0

supervised † 2.7 4.6 6.7 7.8 9.1
semi-supervised object detection methods

DD [11] 4.4 5.8 8.4 9.7 10.3
STAC [12] 4.0 6.7 7.0 9.9 9.9
CSD [5] 5.3 7.0 8.4 9.4 9.7

Ubteacher [8] 4.5 6.6 9.1 7.7 9.7
semi-supervised semantic segmentation methods
CCT [10] 5.5 7.5 8.2 9.1 9.7

Dual-branch [9] 3.6 6.5 7.9 9.9 10.0
semi-supervised instance segmentation methods

baseline 4.5 6.9 8.8 10.0 10.7
ours 5.7 8.0 10.5 11.6 12.7

ours § 7.0 8.5 11.1 12.5 13.2

2. Quantitative Results
2.1. Results Evaluated with Boundary AP

In the original paper, we evaluate our method mainly us-
ing the mask AP . Recently, boundary AP [2] has been
proposed to focus on boundary quality when evaluating the
results. In this subsection, we adopt the boundary AP to
evaluate our methods.

The experiment section in our original paper has demon-
strated that our method is effective in improving mask
AP by utilizing unlabeled images and learning from noisy
boundaries. From Tab. 1, we notice that besides mask AP ,
our method also boosts boundary AP significantly. Our
method outperforms its supervised counterpart by at least
3%. Especially when labeled images are 20%, we improve
the boundary AP by 4.2%. This improvement illustrates
that our semi-supervised method is powerful in benefiting
the boundary quality. Our method behaves consistently bet-
ter than previous methods. We notice that current consis-
tency regularization based methods, such as CSD [5] or
CCT [10], are suitable for the setting where labeled im-
ages are little - they improve more than 2% boundary AP
when the labeled ratio is 5%. However, when labeled im-
ages are more, such as 40%, the boundary AP increase is
limited - less than 1%. Similarly, the boundary AP en-
hancement of previous pseudo label based methods like DD
[11], STAC [12] deteriorates when the number of labeled
images decreases, suffering from more noisy pseudo labels.
In comparison, our method is effective no matter labeled
images are less or more, and performs 2% better than previ-
ous methods on average. After applying focal loss [6], the
boundary AP improvement reaches almost 5%. The benefit
of our method to the boundary quality is validated.

Table 2: Boundary AP Results on Cityscapes with
coarse-annotated images. † denotes adopting the same
data augmentation in the semi-supervised training. § de-
notes using focal loss for the detection branch.

Method AP AP50 AP75

supervised 12.7 40.4 4.1
supervised † 12.9 39.6 4.7
coarse GT 6.4 21.6 1.9

coarse finetune 8.4 17.8 2.6
fine→ coarse→ fine 13.4 42.2 4.7

ours 17.9 48.9 8.3
ours § 18.9 51.3 8.5

Table 3: Boundary AP Results on COCO with a varying
percentage of labeled images. † denotes data augmenta-
tion. We use COCO 120k unlabeled images for the 100%
experiment.

Method 1% 2% 5% 10% 30% 100%
supervised 1.4 3.8 7.9 10.7 15.9 20.5

supervised † 1.4 3.8 7.8 10.6 15.8 23.2
DD [11] 1.5 5.1 10.2 12.8 17.4 21.6

ours 3.0 7.4 13.0 16.2 19.0 24.2

From Tab. 2, we notice that our method continues to
boost boundary AP by utilizing extra coarse-annotated im-
ages. For our designed experiments where the original
coarse annotations are utilized, we find that they are ineffec-
tive in increasing boundary AP . In some situations, bound-
ary AP even decreases. This is reasonable since inaccurate
coarse segmentation annotations hurt the model’s bound-
ary discrimination ability. Our semi-supervised method, in
comparison, increases the boundary AP by more than 5%.
This further demonstrates its segmentation performance.

We also evaluate the boundary AP on the COCO dataset.
The results are listed in Tab. 3. Our method is still supe-
rior. It brings a more than 3% boundary AP improvement
compared to the supervised method. When the labeled ra-
tio is 5% and 10%, the boundary AP enhancement is more
significant, 5.1% and 5.5% separately. Considering that
the coarse annotations of the COCO dataset may provide
ambiguous boundary supervision, improving the quality of
boundaries is kind of difficult for the COCO dataset. In this
situation, our method is still effective. This demonstrates its
generalization ability.

2.2. Box-level and Pixel-level Thresholds

In the pseudo label generation step, we design box-level
and pixel-level thresholds to acquire pseudo labels. We il-
lustrate the effectiveness of our designed threshold by mea-
suring the quality of pseudo labels. We evaluate the mask
AP of pseudo labels for different categories and the re-
sults are illustrated in Fig. 1a. As we can see, the fixed
threshold for all categories is limited by the category im-
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Figure 1: Illustration for box-level thresholds and pixel-
level threshold. (a) Per-category thresholds for filtering
boxes help mitigate the class imbalance problem. (b) Our
pixel-level threshold contributes to a higher-quality mask.

Table 4: Experimental Results on Cityscapes with Cas-
cade Mask RCNN.

Method 5% 10% 20% 30% 40%
supervised 13.7 17.5 24.0 28.1 29.4

ours 18.6 22.8 29.7 33.0 35.1

Table 5: Experimental Results on Cityscapes with
SOLOv2.

Method 5% 10% 20% 30% 40%
supervised 5.4 7.8 14.0 17.9 19.7

ours 8.9 13.6 18.9 23.5 24.1

balance problem. For categories where the number of in-
stances is small, the AP of pseudo labels is quite low.
In comparison, the per-category thresh helps improve the
low-shot AP quite significantly. For some categories, the
improvement is even more than 5%. This thus alleviates
the class imbalance problem and improves the quality of
pseudo labels. For the pixel-level threshold, we find that
the foreground-background threshold for this setting on the
Cityscapes dataset is about 0.42. From Fig. 1b, we observe
that the 0.5 threshold is actually a little higher and is easy to
leave excessive pixels as background. In comparison, our
threshold mitigates this problem thus is more reasonable.
Compared to the heuristic choice, our designed threshold
helps obtain better pseudo labels, which is quite important
for the following semi-supervised learning.

2.3. Extension to the Other Models

The main experiments in the original paper is conducted
with Mask RCNN [4]. Our ideas about utilizing unlabeled
images and learning from noisy boundaries are universal
and not restricted to the segmentation model. In this sub-
section, we conduct experiments using other models.

We first utilize Cascade Mask RCNN [1], which com-

Table 6: Complexity analysis on the Cityscapes dataset.
The input image size is 1024× 2048.

Method #FLOPs #Params FPS
Mask RCNN [4] 460.32G 43.78M 7.8

ours 484.80G 44.98M 6.9

prises multiple stages for higher quality refinement. The
mask AP is listed in Tab. 4. Our method is effective for
Cascade Mask RCNN, bringing a 5% AP improvement.
When the labeled ratio is 20%, the improvement is 5.7%,
nearly 6%. For 40% labeled images, the mask AP reaches
35.1%. This experiment demonstrates that our method can
be easily applied for more advanced models.

Both Mask RCNN and Cascade Mask RCNN are
detection-based segmentation models. In this section, we
conduct experiments using SOLOv2 [13], a one-stage
model that predicting segmentation masks directly. The
mask AP is listed in Tab. 5. With a significantly differ-
ent model structure, our method also works well, improving
the mask AP by 5% on average. Our method successfully
applies to the one-stage models. This demonstrates its ef-
fectiveness and generalization ability.

2.4. Complexity Analysis

We further analyze the complexity and list the results in
Tab. 6. The brought computation complexity is acceptable,
only 5% increase for the flops and 2.7% for the number of
parameters. In comparison, the AP improvement is signif-
icant - our semi-supervised method brings a more than 6%
improvement on the Cityscapes dataset. This endows our
method great capability for practical application.

3. Qualitative Results
3.1. More Visual Comparisons

We show more comparative results in Fig. 2 and Fig. 3.
The illustrative results demonstrate the effectiveness of our
NTM and BPM. In the first image from Fig. 2, we notice
that with NTM, the mask of the middle car gets better. With
BPM, the boundary of the left rider (the helmet part) is more
realistic and entire. In the second image, more holistic parts
of the right car is segmented because of our NTM, and the
boundary of the middle person (the right foot) is better be-
cause of our BPM. In the third image, the middle car whose
front part is invisible is detected with the NTM and the leg
boundary of the person gets better with the BPM.

The similar thing occurs in images from the COCO
dataset in Fig. 3. In the first image, the left cap is de-
tected because of the NTM, and the contacting part be-
tween the middle two persons is more accurate because of
the BPM. In the second image, the redundant results of the
right boat is eliminated after using the NTM, and its seg-
mented boundaries are more precise with the BPM. In the



Figure 2: Illustrative results on Cityscapes to show the effectiveness of our NTM and BPM. NTM helps more correct
detected instances (zoomed in green boxes) and BPM helps more precise boundary (zoomed in yellow boxes).

third image, the redundant detected giraffe is gone because
of the NTM, and the contacting part between the giraffe and
the wood gets more clear boundary because of the BPM. In
the fourth image, after adding the NTM, the middle per-
son (segmented in blue) is detected, and the boundary of
the bench is more realistic and clear because of the BPM.
The comparative results on the Cityscapes and the COCO
dataset further validate the function of our NTM and BPM.

3.2. More Visual Results

As is shown in Fig. 4, we provide more instance seg-
mentation results on the Cityscapes, COCO and BDD100K
dataset. The satisfying results under various circumstances
demonstrate the ability for practice application.
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Figure 4: Instance segmentation results of our method on Cityscapes (the first two rows), COCO (the middle two rows)
and BDD100K (the last two rows).


