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Section I introduces the padding strategy of the proposed
occlusion-aware cost constructor (OACC). Section II de-
scribes details of our OACC-Net. Section III presents addi-
tional comparative results on the 4D light field (LF) bench-
mark. Section IV shows additional visual results achieved
by different methods on other LF datasets [5,9,14,17]. Sec-
tion V discusses the broader impact of our method.

I. Padding Strategy of our OACC

As described in Sec 3.2.1 in the main body of our pa-
per, our OACC can achieve cost construction by performing
convolutions on sub-aperture image (SAI) arrays. However,
when handling pixels near the boundary of SAIs, some am-
biguities can be introduced to the resulting matching costs.
Without loss of generality, we take the top-left corner of the
SAI as an example to analyze this boundary issue and intro-
duce our padding strategy.

As shown in Figs. I (a)-(c), we apply our OACC to a
densely-tiled 5×5 SAI array. Each SAI has a spatial size
of H×W . According to Eq. 4 in the main body of our
paper, the dilation rate of our OACC is correlated to the
predefined disparity d. Specifically, when d=0, as shown
in Fig. I (a), the vertical and horizontal dilations equal to
the height and width of the SAI, respectively. In this situ-
ation, there is no boundary issue and the resulting cost ten-
sor has a spatial size of H×W . When d>0, as shown in
Fig. I (b), the vertical/horizontal dilation is smaller than
the height/width of the SAI. In this situation, some sam-
pling points of our OACC move across the boundary of
their corresponding SAIs and locate on the adjacent SAIs
(marked by red boxes). Similarly, when d<0, as shown
in Fig. I (c), the vertical/horizontal dilation is larger than
the height/width of the SAI, and some sampling points lo-
cate on the adjacent SAIs (marked by red boxes) or out-
side the SAI arrays (marked by black boxes). Note that,
pixels marked by the red and black boxes do not provide
any correspondence information, while pixels marked by
the red boxes can even introduce ambiguities to the result-
ing matching costs.

(a) w/o padding, d = 0 (c) w/o padding, d < 0(b) w/o padding, d > 0

(e) zero padding, d < 0(d) zero padding, d > 0
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Figure I. An illustration of the boundary issue and our padding
strategy. Here, a 5×5 SAI array is used as an example. By us-
ing our proposed padding strategy, pixels outside the boundary of
SAIs can be assigned as zero values and thus reduce the matching
ambiguity of our OACC.

In this paper, we propose a padding strategy for our
OACC to reduce matching ambiguities. The core idea of our
padding strategy is to assign zero values to all the “out-of-
boundary” pixels (marked by both red and black boxes). To
achieve this goal, we perform zero-padding to each SAI sep-
arately before organizing them into an SAI array, as shown
in Figs. I (d) and (e). The vertical and horizontal padding
values ηh and ηw can be calculated according to

ηh =
U − 1

2
· d̃, ηw =

V − 1

2
· d̃, (I)

where U and V denote the angular resolution of the LF
(e.g., U=V=5 for a 5×5 LF), d̃=max{|dmax|, |dmin|} de-
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Table I. The detailed architecture of our OACC-Net. “Res-
block2D” and “ResBlock3D” represent 2D and 3D residual block,
respectively. M denotes the number of SAIs (i.e., M=U×V ), and
D denotes the number of disparity candidates.

Layers Setting Input size Output size

Feature Extraction
Conv2D a k=3×3 M×(H×W×1) M×(H×W×16)

ResBlock2D
×8

k=
[3×3

3×3

]
M×(H×W×16) M×(H×W×16)

Conv2D b k=3×3 M×(H×W×16) M×(H×W×16)

Conv2D c k=3×3 M×(H×W×16) M×(H×W×8)

Conv2D d k=3×3 M×(H×W×8) M×(H×W×8)

Cost Construction
Pad & Reshape – M×(H×W×8) UHp×VWp×8

OACC & Crop k=U×V
UHp×VWp×8

U×V×M (mask)
D×H×W×512

Cost Aggregation
Conv3D a k=1×1×1 D×H×W×512 D×H×W×160

Conv3D b k=3×3×3 D×H×W×160 D×H×W×160

Conv3D c k=3×3×3 D×H×W×160 D×H×W×160

ResBlock3D
×2

k=
[3×3×3

3×3×3

]
Channel Att

D×H×W×160 D×H×W×160

Conv3D d k=3×3×3 D×H×W×160 D×H×W×160

Conv3D e k=3×3×3 D×H×W×160 D×H×W×1

Depth Regression
Softmax – D×H×W×1 D×H×W×1

Regress – D×H×W×1 H×W×1

notes the maximum absolute value of the predefined dispar-
ity (equals to 4 in this paper). After zero-padding, each SAI
has a height of Hp=H+2ηh and a width of Wp=W+2ηw.
The padded SAIs are then organized into an SAI array for
cost construction, and the dilation rates of our OACC are
recalculated according to Hp and Wp. It can be proved that
ηh and ηw are large enough to make all the sampling points
not locate on other views under each candidate disparity.
The output of our OACC under disparity d has a height of
(H+(U−1)(d+d̃)) and a width of (W+(V−1)(d+d̃)). Fi-
nally, cropping is performed to the resulting cost tensor to
ensure it has a resolution of H×W . The cropping values
can be calculated according to

ch(d) =
U − 1

2
· (d+ d̃), cw(d) =

V − 1

2
· (d+ d̃), (II)

where ch(d) and cw(d) denote the vertical (i.e., top and bot-
tom) and horizontal (i.e., left and right) cropping values, re-
spectively.

II. Details of our OACC-Net
The detailed structure of our OACC-Net is shown in Ta-

ble I. In the feature extraction stage, a 3×3 convolution (i.e.,
Conv2D a) is used to extract initial feature with a channel
depth of 16. Then, eight residual blocks (i.e., ResBlock2D)
are applied for deep feature extraction. Finally, three 3×3
convolutions are used to integrate the extracted features for
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Figure II. The architecture of our channel attention-based 3D
residual block (i.e., ResBlock3D).

cost construction. We use LeakyReLU with a leaky factor
of 0.1 for activation, and perform batch normalization after
each convolution except the last one (i.e., Conv2D d).

After feature extraction, we obtained an LF feature of
size M×H×W×8, where M=U×V denotes the number
of views. Then, we perform zero-padding (as described in
Sec. I) to each SAI and organize the padded SAIs into an
array of size UHp×VWp×8. The proposed OACC (with a
kernel size of U×V ) takes the padded SAI array and an oc-
clusion mask (of size U×V×M ) as its input for cost con-
struction. The generated cost tensor has a channel depth
of 512 to fully incorporate the correspondence information
from all the views.

In the cost aggregation stage, a 3D convolution (with a
kernel size of 1×1×1) is first used to reduce the channel
depth from 512 to 160. Then, eight 3D convolutions (with
a kernel size of 3×3×3) are used for deep cost aggregation.
The middle four convolutions are organized into two resid-
ual blocks, and channel attention mechanism is adopted
at the end of each residual block to highlight contributive
channels, as illustrated in Fig. II. Similar to the feature ex-
traction stage, we use LeakyReLU with a leaky factor of 0.1
for activation and perform batch normalization after each
3D convolution except the last one (i.e., Conv3D e).

III. Results on the 4D LF Benchmark

Table II reports the quantitative results (i.e., BadPix0.07,
BadPix0.03, BadPix0.01, and MSE) of our method and the
compared methods. Figures III and IV show the estimated
disparity maps and the corresponding error maps on the
eight validation scenes. Figure V shows the estimated dis-
parity maps on the four test scenes.

IV. Results on different LF datasets

Figures VI, VII, and VIII show the comparative visual
results achieved by SPO [19], EPINET [12] and our method
on different kinds LF datasets [5, 9, 14, 17].



CAE PS_RF SPO OBER-cross-ANP EPN+OS+GC Epinet-fcn-m EPI_ORM LFAttNet FastLFnet OursSPO-MO

Di
sp

ar
ity

Ba
dP

ix
0.

07 12.40 7.975 16.27 21.17 1.5100.974 39.25 2.490 36.10 1.4322.781

Ba
dP

ix
0.

03 42.50 17.54 35.07 41.11 3.04037.66 82.74 9.117 47.93 3.01216.58

M
SE

5.082 8.338 5.238 1.757 22.37 1.475 14.48 1.425 3.407 1.4183.763

Dots

Groundtruth

CAE PS_RF SPO OBER-cross-ANP EPN+OS+GC Epinet-fcn-m EPI_ORM LFAttNet FastLFnet OursSPO-MO

Di
sp

ar
ity

Ba
dP

ix
0.

07 1.681 0.107 0.861 0.620 0.1570.364 0.242 0.159 0.1950.050 0.324

Ba
dP

ix
0.

03 7.162 6.235 6.263 2.193 0.5361.130 3.169 0.874 0.4891.371 1.301

M
SE

0.048 0.043 0.043 0.008 0.018 0.007 0.004 0.018 0.0040.009 0.016

Pyramids

Groundtruth

Di
sp

ar
ity

CAE PS_RF SPO OBER-cross-ANP EPN+OS+GC Epinet-fcn-m EPI_ORM LFAttNet FastLFnet OursSPO-MO

Ba
dP

ix
0.

07 7.872 2.964 14.99 9.442 2.9203.065 18.55 2.457 6.871 2.9334.118

Ba
dP

ix
0.

03 16.90 5.790 15.46 32.59 4.6449.352 19.59 2.711 13.94 5.4174.745

M
SE

3.556 1.382 6.955 1.435 8.731 0.932 1.744 0.892 0.984 0.8451.934

Stripes

Groundtruth

Groundtruth CAE PS_RF SPO OBER-cross-ANP EPN+OS+GC Epinet-fcn-m EPI_ORM LFAttNet FastLFnet OursSPO-MO

Di
sp

ar
ity

Ba
dP

ix
0.

07 3.924 7.142 3.781 5.138 3.9313.413 3.328 3.501 3.988 3.1263.450

Ba
dP

ix
0.

03 4.313 13.94 8.639 11.41 6.6404.952 10.56 5.563 7.238 3.9846.971

M
SE

4.587 4.799 3.699 3.705 3.411 3.648 3.986 3.9384.1336.074 6.892

Backgammon

Figure III. Visual comparisons of disparity and error maps on validation scenes “backgammon”, “dots”, “pyramids”, and “stripes” [2].
Corresponding quantitative scores (BadPix0.07, BadPix0.03, and MSE) are reported on the top-left corner of each error map.
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Figure IV. Visual comparisons of disparity and error maps on validation scenes “boxes”, “cotton”, “dino”, and “sideboard” [2]. Corre-
sponding quantitative scores (BadPix0.07, BadPix0.03, and MSE) are reported on the top-left corner of each error map.



Table II. Quantitative results (i.e., BadPix0.07 (BP07), BadPix0.03 (BP03), BadPix0.01 (BP01), and MSE×100 (MSE)) achieved by
different LF depth estimation methods on the 4D LF benchmark [2]. The best results are in red and the second best results are in blue.

Backgammon Dots Pyramids Stripes
BP07 BP03 BP01 MSE BP07 BP03 BP01 MSE BP07 BP03 BP01 MSE BP07 BP03 BP01 MSE

LF OCC [15] 13.52 44.90 91.40 22.78 9.695 31.09 76.02 3.185 1.450 25.57 92.86 0.077 18.33 54.69 98.63 7.942
CAE [18] 3.924 4.313 17.32 6.074 12.40 42.50 83.70 5.082 1.681 7.162 27.54 0.048 7.872 16.90 39.95 3.556
PS-RF [4] 7.142 13.94 74.66 6.892 7.975 17.54 78.80 8.338 0.107 6.235 83.23 0.043 2.964 5.790 41.65 1.382
SPO [19] 3.781 8.639 49.94 4.587 16.27 35.06 58.07 5.238 0.861 6.263 79.20 0.043 14.99 15.46 21.87 6.955
SPO-MO [11] 3.450 6.971 28.27 4.133 2.781 16.58 41.02 3.763 0.050 1.371 13.50 0.009 4.118 4.745 27.57 1.934
OBER-cross-ANP [10] 3.413 4.952 13.66 4.700 0.974 37.66 73.13 1.757 0.364 1.130 8.171 0.008 3.065 9.352 44.72 1.435
OAVC [1] 3.121 5.117 49.05 3.835 69.11 75.38 92.33 16.58 0.831 9.027 33.66 0.040 2.903 19.88 28.14 1.316
EPN+OS+GC [8] 3.328 10.56 55.98 3.699 39.25 82.74 84.91 22.37 0.242 3.169 28.56 0.018 18.54 19.60 28.17 8.731
Epinet-fcn [12] 3.580 6.289 20.89 3.629 3.183 12.73 41.05 1.635 0.192 0.913 11.87 0.008 2.462 3.115 15.67 0.950
Epinet-fcn-m [12] 3.501 5.563 19.43 3.705 2.490 9.117 35.61 1.475 0.159 0.874 11.42 0.007 2.457 2.711 11.77 0.932
Epinet-fcn-9×9 [12] 3.287 4.482 15.39 3.909 4.030 18.70 44.64 1.980 0.147 0.604 8.913 0.007 2.413 2.876 14.75 0.915
EPI-Shift [6] 22.89 40.53 70.58 12.79 43.92 53.18 74.55 13.15 1.242 7.315 40.48 0.037 22.72 47.70 78.95 1.686
EPI ORM [7] 3.988 7.238 34.32 3.411 36.10 47.93 65.71 14.48 0.324 1.301 19.06 0.016 6.871 13.94 55.14 1.744
LFAttNet [13] 3.126 3.985 11.58 3.648 1.432 3.012 15.06 1.425 0.195 0.488 2.063 0.004 2.933 5.417 18.21 0.892
FastLFnet [3] 5.138 11.41 39.84 3.986 21.17 41.11 68.15 3.407 0.620 2.193 22.19 0.018 9.442 32.60 63.04 0.984
DistgDisp [16] 5.824 10.54 26.17 4.712 1.826 4.464 25.37 1.367 0.108 0.539 4.953 0.004 3.913 6.885 19.25 0.917
OACC-Net (ours) 3.931 6.640 21.61 3.938 1.510 3.040 21.02 1.418 0.157 0.536 3.852 0.004 2.920 4.644 15.24 0.845

Boxes Cotton Dino Sideboard
BP07 BP03 BP01 MSE BP07 BP03 BP01 MSE BP07 BP03 BP01 MSE BP07 BP03 BP01 MSE

LF OCC [15] 26.03 60.70 91.48 9.593 4.743 38.11 88.70 1.074 15.37 50.17 88.81 0.944 17.91 50.55 84.65 2.073
CAE [18] 17.89 40.40 72.69 8.424 3.369 15.50 59.22 1.506 4.968 21.30 61.06 0.382 9.845 26.85 56.92 0.876
PS RF [4] 18.95 35.23 76.39 9.043 2.425 14.98 70.41 1.161 4.379 16.44 75.97 0.751 11.75 36.28 79.98 1.945
SPO [19] 15.89 29.52 73.23 9.107 2.594 13.71 69.05 1.313 2.184 16.36 69.87 0.310 9.297 28.81 73.36 1.024
SPO-MO [11] 15.49 22.37 49.77 10.37 2.161 9.038 32.08 1.329 1.968 9.591 42.64 0.254 7.515 21.00 52.90 0.932
OBER-cross-ANP [10] 10.76 17.92 44.96 4.750 1.108 7.722 36.79 0.555 2.070 6.161 22.76 0.336 5.671 12.48 32.79 0.941
OAVC [1] 16.14 33.68 71.91 6.988 2.550 20.79 61.35 0.598 3.936 19.03 61.82 0.267 12.42 37.83 73.85 1.047
EPN+OS+GC [8] 15.30 29.01 67.35 9.314 2.060 9.767 54.85 1.406 2.877 12.79 58.79 0.565 7.997 23.87 66.35 1.744
Epinet-fcn [12] 12.84 19.76 49.04 6.240 0.508 2.310 28.06 0.191 1.286 3.452 22.40 0.167 4.801 12.08 41.88 0.827
Epinet-fcn-m [12] 12.34 18.11 46.09 5.968 0.447 2.076 25.72 0.197 1.207 3.105 19.39 0.157 4.462 10.86 36.49 0.798
Epinet-fcn-9×9 [12] 12.25 18.66 45.73 6.036 0.464 2.217 25.27 0.223 1.263 3.221 23.44 0.151 4.783 11.82 40.49 0.806
EPI-Shift [6] 25.95 44.14 74.36 9.790 2.176 10.68 46.86 0.475 5.964 22.14 64.16 0.392 11.80 36.64 73.42 1.261
EPI ORM [7] 13.37 25.33 59.68 4.189 0.856 5.564 42.94 0.287 2.814 8.993 41.04 0.336 5.583 14.61 52.59 0.778
LFAttNet [13] 11.04 18.97 37.04 3.996 0.271 0.697 3.644 0.209 0.848 2.339 12.22 0.093 2.869 7.243 20.73 0.530
FastLFnet [3] 18.70 37.45 71.82 4.395 0.714 6.785 49.34 0.322 2.407 13.27 56.24 0.189 7.032 21.62 61.96 0.747
DistgDisp [16] 13.31 21.13 41.62 3.325 0.489 1.478 7.594 0.184 1.414 4.018 20.46 0.099 4.051 9.816 28.28 0.713
OACC-Net (ours) 10.70 18.16 43.48 2.892 0.312 0.829 10.45 0.162 0.967 2.874 22.11 0.083 3.350 8.065 28.64 0.542

Bedroom Bicycle Herbs Origami
BP07 BP03 BP01 MSE BP07 BP03 BP01 MSE BP07 BP03 BP01 MSE BP07 BP03 BP01 MSE

LF OCC [15] 18.34 54.13 88.88 0.530 19.00 54,25 90.06 7.673 17.72 47.36 87.39 22.96 18.78 52.47 88.40 2.223
CAE [18] 5.788 25.36 68.59 0.234 11.22 23.62 59.64 5.135 9.550 23.16 59.24 11.67 10.03 28.35 64.16 1.778
PS RF [4] 6.015 22.45 80.68 0.288 17.17 32.32 79.80 7.926 10.48 21.90 66.47 15.25 13.57 36.45 80.32 2.393
SPO [19] 4.864 23.53 72.37 0.209 10.91 26.90 71.13 5.570 8.260 30.62 86.62 11.23 11.69 32.71 75.58 2.032
SPO-MO [11] 3.228 13.91 43.80 0.152 10.05 22.47 50.47 5.617 8.269 19.71 46.08 12.05 9.411 23.07 53.99 1.667
OBER-cross-ANP [10] 3.329 9.558 28.91 0.185 8.683 16.17 37.83 4.314 7.120 14.06 36.83 10.44 8.665 20.03 42.16 1.493
OAVC [1] 4.915 19.09 64.76 0.212 12.22 25.46 64.74 4.886 8.733 29.65 74.76 10.36 12.56 30.59 69.35 1.478
EPN+OS+GC [8] 7.543 16.76 58.93 1.188 11.60 24.86 64.10 6.411 9.190 25.72 67.13 11.58 10.75 27.09 67.35 10.09
Epinet-fcn [12] 2.403 6.921 33.99 0.213 9.896 18.05 46.37 4.682 12.10 28.95 62.67 9.700 5.918 14.37 45.93 1.466
Epinet-fcn-m [12] 2.299 6.345 31.82 0.204 9.614 16.83 42.83 4.603 10.96 25.85 59.93 9.491 5.807 13.00 42.21 1.478
Epinet-fcn-9×9 [12] 2.287 6.291 31.23 0.231 9.853 17.19 43.85 4.929 17.75 34.54 59.86 9.423 6.339 13.92 42.17 1.646
EPI-Shift [6] 8.297 21.51 55.45 0.284 20.79 39.59 68.48 6.920 14.19 26.66 56.98 17.01 11.52 33.75 73.45 1.690
EPI ORM [7] 5.492 14.66 51.02 0.298 11.12 21.20 51.22 3.489 8.515 24.60 68.79 4.468 8.661 22.95 56.57 1.826
LFAttNet [13] 2.792 5.318 13.33 0.366 9.511 15.99 31.35 3.350 5.219 9.483 19.27 6.605 4.824 8.925 22.19 1.733
FastLFnet [3] 4.903 15.92 52.88 0.202 15.38 28.45 59.24 4.715 10.72 23.39 59.98 8.285 12.64 33.65 72.36 2.228
DistgDisp [16] 2.349 5.925 17.66 0.111 9.856 17.58 35.72 3.419 6.846 12.44 24.44 6.846 4.270 9.816 28.42 1.053
OACC-Net (ours) 2.308 5.707 21.97 0.148 8.078 14.40 32.74 2.907 6.616 46.78 86.41 6.561 4.065 9.717 32.25 0.878
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Figure V. Visual comparisons of disparity maps on test scenes “bedroom”, “bicycle”, “herbs”, and “origami” [2]. The groundtruth disparity
of these scenes are not released. The MSE of each method (copied from the benchmark site) is reported on the left-top corner.
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Figure VI. Visual results achieved by SPO [19], EPINET [12], and our method on the Stanford Gantry LF dataset [14]. Groundtruth
disparity of these real-world LFs are unavailable.
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Figure VII. Visual results achieved by SPO [19], EPINET [12], and our method on LFs captured by Lytro cameras [5, 9]. Groundtruth
disparity of these real-world LFs are unavailable.

V. Broader Impact

Our method has many potential applications such as 3D
reconstruction, autonomous driving, and robotic systems.
With fast and accurate depth estimation, our method can
improve both accuracy and real-time performance of these
systems.

Although our method achieves improved depth estima-
tion accuracy on different datasets, the performance of our
method is less promising in some challenging situations. As
shown in Fig. IX, when handling scenes with reflective sur-
faces (e.g., bulldozer [14]), repetitive textures (e.g., monas-
Room [17]), and illuminance variations (e.g., bench [9]),

our method generates depth maps with large errors and ob-
vious artifacts. Such failure cases can raise some poten-
tial safety issues such as collisions in robotics and accidents
in autonomous driving. Consequently, sufficient safety test
should be conducted before deploying our method to a spe-
cific system.

In the future, we will improve the robustness of our
method to various challenging situations such as non-
Lambertain surfaces, repetitive textures, textureless regions,
illuminance variations, and extreme lighting conditions. We
believe our method can benefit both research and industrial
communities, and promote the development of LF-based
computer vision.
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Figure VIII. Visual results achieved by SPO [19], EPINET [12], and our method on the old HCI LF dataset [14].
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Figure IX. Visual results achieved by SPO [19], EPINET [12], and our method on three challenging scenes (i.e., bulldozer [14] with
reflective surfaces, monasRoom [17] with repetitive textures, and bench [9] with illuminance variations).
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