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In this supplementary material, we include:

1. Experiments on Openlmages [ |] demonstrating that
scaling number of unlabeled training images further
improves GGN (section A).

2. Effects of ImageNet [5] pre-training on open-world in-
stance segmentation (section B)

3. Additional qualitative results of open-world segmenta-
tion in the wild on ADE20K and UVO (section C).

4. A proof of concept experiment of using GGN for
closed-world class-aware instance segmentation (sec-
tion D).

5. Our discussion on the limitations and future directions
of the proposed method (section E).

6. Ablations on data augmentation techniques for training
PA (section F)

A. Improve GGN by scaling unlabeled pixels

In section 5 of main paper, we showed how our proposed
method generates pseudo-GT masks on unlabeled images,
and how GGN benefited from training on unlabeled images
(Table 7). Here, we further show how GGN can be further
improved by scaling the number of unlabeled training im-
ages.

We increase the size of unlabeled images (e.g., 100k,
250k, 500k, 1M) sampled from OpenlmagesV4 [11] and
take top-3 scoring pseudo-masks per image and use them
as pseudo-GT masks for training. As shown in Figure 1,
increasing the number of unlabelled training images con-
tinuously improves model performances in various setups.
This further demonstrates the potential of GGN in both
open-world (non-VOC, non-COCO [12], ADE20k [17])
and closed-world (VOC) instance segmentation.
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Figure 1. The effect of scaling the number of images in training
GGN. We increase the size of subset of Openlmages [11] to 100k,
250k, 500k and 1M and train GGNs with pseudo-masks generated
by pairwise affinities trained on VOC masks. In all setups, scaling
images keeps improving model performance.

B. ImageNet pre-training for open-world in-
stance segmentation

In closed-world setup, ImageNet label pre-training of-
fers limited values [8]: when training from scratch at 6x
standard schedule, detectors perform on-par with 1x sched-
ule finetuning from ImageNet label pre-training. This ques-
tioned if ImageNet label pre-training is a strong baseline to
compare to (as we did in section 5.5). We argue that it is in-
deed a strong baseline, and that ImageNet label pre-training
outperforms 6x schedule training from scratch (Table 1).
This validates the value of ImageNet label pre-training for



Training strategy LVIS | UVO | ADE20K
6x schedule from scratch | 13.1 41.5 13.7
ImageNet pre-training 14.7 | 41.8 14.6

Table 1. Different from common wisdom in closed-world instance seg-
mentation, ImageNet pre-training outperforms long training schedule
from random initialization in open-world. We verify this with Mask R-
CNN trained/ finetuned on COCO and evaluate on Non-COCO categories
in LVIS [6], UVO [16] and ADE20K [17]

open-world instance segmentation, making it a proper base-
line to compare with.

C. Qualitative results in the wild

We provide additional visualizations to compare GGN
and baseline Mask R-CNN on ADE20k and UVO [16] (Fig-
ure 2 and Figure 3). Both models are trained with masks
from 80 COCO categories, with GGN enhanced by pseudo-
masks on COCO images. We show that GGN can recall
more true positive segments than baseline, including novel
objects, severely occluded objects and stuff.

D. Does generic grouping help closed-world
segmentation?

In the previous experiments, we showed that GGN is
useful for instance segmentation in the open-world (a.k.a
class-aware instance segmentation). One may wonder if
GGN is also useful for closed-world segmentation. In or-
der to answer the question, we conduct the following proof-
of-concept experiment. We adopt the standard Mask R-
CNN [9] by replacing its RPN branch with our GGN. We
note that our GGN also outputs bounding boxes and masks
thus can completely replace RPN. In our experiment, GGN
is pretrained with pseudo-GT in a class-agnostic and fixed
(no fine-tuning or refinement) during class-aware training
and evaluation. This means, during class-aware training and
evaluation, only the recognition head is trained. We hypoth-
esis the GGN can be competitive with RPN, even with a
closed-world, class-aware setup. We name this modified ar-
chitecture as Tiwo-Tower to reflex the recognition and group-
ing branches. The grouping branch, GGN, is trained on only
VOC-category masks. We compare this Two-Tower archi-
tecture with Mask R-CNN which is trained end-to-end in
limited data domain: using only 10% of COCO images on
all classes. Whereas Mask R-CNN is trained on grouping
from all categories, the two-tower grouping module only
leverages VOC masks and generated pseudo masks. Results
are presented in Table 2.

E. Limitations and future directions

We present GGN that combines bottom-up grouping and
top-down training for open-world instance segmentation.

Method mAP | mAR
Mask R-CNN | 10.6 36.2
Two-Tower 12.7 36.5
Mask R-CNN | 154 40.0
Two-Tower 13.5 36.5

Training length

short

normal

Table 2. Proof of concept on Two-Tower model for grouping and recog-
nition Mask R-CNN is trained on all 80 COCO categories. GGN, as the
grouping module, is only trained on 20 VOC classes. The recognition
module does not alter the mask predictions of the grouping module, and is
trained with 80 COCO categories for classification. Two-tower is compet-
itive in both short and normal training schedules.

The framework has shown significant gains and achieves the
new state-of-the-art results on multiple benchmarks. In this
section, we discuss the limitations of the approach, which
also inform future directions to tackle.

Objectness. In GGN, we used WT+UCM [2] to group pix-
els into segments leveraging learned pixel pairwise affini-
ties. However, WT+UCM has certain limitations: it has no
notion of objectness, and therefore constructs pixel groups
of “part” of an object. It is important to find novel methods
to select good masks from all proposed pseudo-masks lever-
aging certain objectness prior, which can be learned [10] or
hand-crafted [3].

Hierarchy of groups. When we select pseudo-GT masks
generated from pairwise affinities, we ignore the natural hi-
erarchical structure of the groups generated by UCM. It is
worth understanding if enforcing grouping hierarchies can
further improve the supervision signals.

Grouping as pretext task. Existing frameworks, such
as Mask R-CNN, leverage recognition as pre-training for
grouping (e.g., by pre-training on ImageNet). In this paper,
we have demonstrated the value of training on unlabeled
data to form grouping. A extension of this work should
study how learning to group can potentially benefit recog-
nition ability.

F. Data augmentation for learning PA

While data augmentation is well-explored in learning ob-
ject proposals or masks [15, 18], it is not well-studied in the
context of pairwise affinities or similar representation such
as semantic edges [ |, 1 3]. Different from bounding boxes or
masks, pairwise affinities are local features and can be very
sensitive to both pixel-level and spatial-level transforms.

Many data augmentation has a positive effect on pair-
wise affinities: multi-scaling is the strongest augmentation
among all. Besides, CLAHE [14] and Hue-Saturation value
jittering provide strong pixel-level augmentation. Not all
augmentation helps to learn pairwise affinities: among 20
types of augmentation experimented, more than half hurts
the performance of pairwise affinities (Fig. 4). For instance,
different from the findings in contrastive learning [4, 7], all
kinds of blurring hurts the performance of pairwise affini-
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Figure 2. Visualization of GGN compared to baseline on ADE20k. We take top-100 scoring predictions for each of the methods. GGN
detects significantly more true positive segments compared to baseline, including novel objects and stuff. Number in bracket represents
number of retrieved segments.
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Figure 3. Visualization of GGN compared to baseline on UVO. We take top-100 scoring predictions for each of the methods. GGN
detects significantly more true positive segments compared to baseline, including novel objects and stuff. Number in bracket represents

number of retrieved segments.

ties. Pairwise affinities predict local relationship, which be-
comes uncertain with blurred images. In addition, orienta-
tion matters. While horizontal flipping and shearing con-
tribute positively to learning pairwise affinities, vertical op-
erators of the same kinds hurt the performance. We visual-
ize a few augmentation in Figure 5.
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