
S1. Proofs
S1.1. Proof of Theorem 1

Restatement of Theorem 1 If Ps ∈ P , thenHs ⊂ H∗.

Proof. It suffices to prove that for any hs ∈ Hs, we have

hs(·) ∈ arg min
h

sup
P∈P

EP [L(h(X), Y )]. (1)

To prove (1), we only need to show that for any h(·) and P ∈ P , there exists Q ∈ P such that

EQ[L(h(X), Y )] ≥ EP [hs(X), Y )], (2)

and hence
sup
Q∈P

EQ[L(h(X), Y )] ≥ sup
P∈P

EP [L(hs(X), Y )].

Recall that

Hs =

{
(φ ◦ g)(·)

∣∣∣ φ(w) ∈ arg min
z

EPs
[L(z, Y ) | g(X) = w], a.s.

}
.

Since hs(·) ∈ Hs, there is some φs(·) satisfying hs(·) = (φs ◦ g)(·) and φs(w) ∈ arg minz EPs [L(z, Y ) | g(X) = w] for
almost every w. Suppose (X, η) ∼ PX × F and (m(g(X), η), X) ∼ Q where PX is the marginal distributions of X under
P . Let U be the support of noise η. Then

EQ[L(h(X), Y ) | X = x] =

∫
U
L(h(x),m(g(x), u))Pη(du)

≥
∫
U
L(φs(g(x)),m(g(x), u))Pη(du)

= EP [L(hs(X), Y ) | g(X) = g(x)] a.s.

Here the first equation follows from the fact that X and η are independent under Q. The inequality is from the fact that∫
U
L(h(x),m(g(x), u))Pη(du) = EPs

[L(h(x), Y ) | g(X) = g(x)]

and
φs(w) ∈ arg min

z
EPs

[L(z, Y ) | g(X) = w] = arg min
z

∫
U
L(z,m(w, u))Pη(du)

for almost every w. The last equation is due to P ∈ P . Then equation (2) follows by taking expectation and the law of
iterated expectation.

S1.2. Proof of Theorem 2

To begin with, we establish two useful lemmas regarding CITs. The first lemma states that g(·) is determined up to an
invertible transformation by the transformation that it is invariant to.

For a given function h(·), let Th = {T (·) : (h ◦ T )(·) = h(·)}. Then we have the following lemma.

Lemma 1. For any h1(·) and h2(·), Th1
⊂ Th2

if and only if there exists a function v(·) such that h2(·) = (v ◦ h1)(·), and
Th1 = Th2 if and only if there is an invertible function v(·) such that h2(·) = (v ◦ h1)(·).

Proof. We only prove the former statement as the latter can be obtained as a corollary of the former. The “if” direction is
obvious.

Here we prove the “only if” direction. Let R1 and R2 be the range of h1(·) and h2(·), respectively. For any w1 ∈ R1

and w2 ∈ R2, define Dh1,w1 = {x : h1(x) = w1} and Dh2,w2 = {x : h2(x) = w2}. Then h2(·) = (v ◦ h1)(·) if and only
if for any w2 ∈ R2, there is some w1 ∈ R1 such that Dh1,w1 ⊂ Dh2,w2 . Thus, the former claim holds if we can show the
following: Th1

⊂ Th2
implies that there is some w2 ∈ R2 such that Dh1,w1

⊂ Dh2,w2
for any w1 ∈ R1. We will prove this

by contraction.



Suppose there exists w1 such that Dh1,w1 6⊂ Dh2,w2 for any w2 ∈ R2. Because
⋃
w2∈R2

Dh2,w2 constitutes the whole
space, there is some w2 such that Dh1,w1

⋂
Dh2,w2

6= ∅ and Dh1,w1
6⊂ Dh2,w2

. Thus, Dh1,w1
\ Dh2,w2

6= ∅. Let x† denote
a point in Dh1,w1 \ Dh2,w2 and let x′ a point in Dh2,w2

⋂
Dh1,w1 . Define T∗ as the transformation such that T∗(x′) = x†,

T∗(x
†) = x′ and T∗(x) = x for x 6= {x′, x†}. Then it is straightforward to verify that T∗ ∈ Th1 but T∗ /∈ Th2 , which is a

contradiction.

Thus g(·) can be characterized by Tg up to an invertible transformation. Define Cg = {g′(·) : g′(·) = (v ◦
g)(·) for some invertible transformation v(·)}. For any g′ ∈ Cg , by defining

H′s =

{
(φ ◦ g)(·)

∣∣∣ φ(w) ∈ arg min
z

EPs [L(z, Y ) | g′(X) = w], a.s.

}
,

similar arguments as in the proof of Theorem 1 can show H′s ⊂ H∗. To train a model that generalizes well on all the data
distributions following the same causal mechanism, any g′(·) ∈ Cg is sufficient. Thus, if Tg is known, to find a model belongs
toH∗, one may firstly find an invariant feature map g′(·) such that Tg′ = Tg and then obtain the model according to Theorem
1. However, finding a g′(·) such that Tg′ = Tg is sometimes still a hard task.

For any function h(·), define Ih in the same way as Ig with g(·) replaced by h(·) in the definition. We then have the
following lemma.

Lemma 2. For any h1(·) and h2(·), if Ih1
⊂ Th2

, then there exists a function v(·) such that h2(·) = (v ◦ h1)(·).

Proof. Like in the proof of Lemma (1), it suffices to show that Ih1
⊂ Th2

implies for any w1 ∈ R1, there is some w2 ∈ R2

such that Dh1,w1
⊂ Dh2,w2

. We prove this by contraction.
Suppose there is some w1 such that Dh1,w1 6⊂ Dh2,w2 for any w2 ∈ R2. Because

⋃
w2∈R2

Dh2,w2 is the whole space,
there is some w2 such that Dh1,w1

⋂
Dh2,w2 6= ∅ and Dh1,w1 6⊂ Dh2,w2 . Thus, Dh1,w1 \ Dh2,w2 6= ∅. Let x† be a point

in Dh1,w1 \ Dh2,w2 and let x′ be a point in Dh2,w2

⋂
Dh1,w1 . According to the definition of essential invariant subset,

because h1(x1) = h2(x2), there are finite transformations T1(·), . . . , TK(·) ∈ Ig such that T̄ (x′) = x† where T̄ (·) =
(T1 ◦ · · · ◦ TK)(·). It can be verified that Th2

is closed with respect to function composition. Hence, T̄ (·) ∈ Th2
. However,

h2(T̄ (x′)) = h2(x†) 6= w2 = h2(x′), which is a contradiction.

Restatement of Theorem 2 If Ps ∈ P , then

Hs ⊂ arg min
h

sup
T∈Tg

EPs
[L(h(T (X)), Y )],

whereHs is defined in (3).

Proof. It suffices to show that for all hs(·) ∈ Hs, we have

hs(·) ∈ arg min
h

sup
T∈Tg

EPs
[L(h(T (X)), Y )]. (3)

Note that hs(·) = (φs ◦ g)(·) for some φs(·) and hence is invariant to any transformation T (·) ∈ Tg . We then have
supT∈Tg EPs

[L(hs(X), Y )] = EPs
[L(hs(T (X)), Y )]. Thus, it suffices to prove that for all h(·), there exists T (·) ∈ Tg

such that
EPs [L(h(T (X)), Y )] ≥ EPs [L(hs(X), Y )]. (4)

According to axiom of choice, there is a choice function a such that a(w) ∈ Dg,w for almost every w. Define T̃ to be a
transformation such that T̃ (x) = a(w) for x ∈ Dg,w. Then T̃ (·) ∈ Tg and we have

EPs
[L(h(T̃ (X)), Y ) | g(X) = w] = EPs

[L(h(a(w)), Y ) | g(X) = w]

≥ EPs
[φs(w), Y ) | g(X) = w]

= EPs
[L(hs(X), Y ) | g(X) = w] a.s.

(5)

By taking expectation on both sides, we can obtain equation (4).



S2. Proof of Theorem 3
Restatement of Theorem 3 If Ps ∈ P , then

Hs = arg min
h

EPs
[L(h(X), Y )] subject to h(·) = (h ◦ T )(·), ∀ T (·) ∈ Ig. (6)

where Ig is any causal essential set of g(·) andHs is defined in (3).

Proof. We first show
Hs ⊂ arg min

h
EPs [L(h(X), Y )]

subject to h(·) = (h ◦ T )(·), ∀ T (·) ∈ Ig.

Note that the restriction in (6) is equivalent to Ig ⊂ Th. It suffices to show that

EPs
[L(h(X), Y )] ≥ EPs

[L(hs(X), Y )] (7)

for any h(·) with Ig ⊂ Th and for any hs(·) ∈ Hs. If Ig ⊂ Th, according to Lemma 2, there exists v(·) such that h(·) =
(v◦g)(·). By the definition of hs(·), there also exists φs(·) satisfying hs(·) = (φs◦g)(·) and φs(w) ∈ arg minz EPs

[L(z, Y ) |
g(X) = w] for almost every w. Thus, we have

EPs
[L(h(X), Y ) | g(X) = w] = EPs

[L(v(w), Y ) | g(X) = w]

≥ EPs
[L(φs(w), Y ) | g(X) = w]

≥ EPs
[L(hs(X), Y ) | g(X) = w] a.s.

Then (7) follows by taking expectation.
Next we show the opposite inclusion to prove (6). Suppose h∗(·) is a solution to the optimization problem in (6). Then

according Lemma 2, there is some v∗(·) such that h∗(·) = (v∗ ◦ g)(·). Let hs(·) = (φs ◦ g)(·) ∈ Hs. Then

EPs
[L(h∗(X), Y ) | g(X) = w] = EPs

[L(v∗(w), Y ) | g(X) = w]

≥ EPs
[L(φs(w), Y ) | g(X) = w]

= EPs
[L(hs(X), Y ) | g(X) = w] a.s.,

(8)

by definition. Because h∗(·) is a solution to the minimization problem, we have

EPs
[L(h∗(X), Y )] = EPs

[L(hs(X), Y )].

Combining this with (8), we have

EPs [L(h∗(X), Y ) | g(X) = w] ≤ EPs [L(hs(X), Y ) | g(X) = w] a.s. (9)

This implies
EPs

[L(v∗(w), Y ) | g(X) = w] ≤ EPs
[L(φs(w), Y ) | g(X) = w]

= min
z

EPs
[L(z, Y ) | g(X) = w] a.s.

Thus, we conclude that v∗(w) ∈ arg minz EPs
[L(z, Y ) | g(X) = w].

S3. More Experimental Results
S3.1. Toy Example and Simulation

In the following toy example, we are able to construct an explicit formulation of the causal essential invariant set.

Example 1. Let X be a non-singular 2 × 2 matrix and X(j) be the j-th column of X for j = 1, 2. Suppose that
g(X) is the area of the triangle formed by the two points X(1), X(2) and the origin. Then it is not hard to show that



{TR,θ(·), TS,a(·), TM (·), TP (·), TI(·) | θ ∈ [0, π/4], a ∈ [2/3, 3/2]} is an essential invariant set of g(·), where

TR,θ(X) =

(
cos θ − sin θ
sin θ cos θ

)
X, TS,a(X) = X

(
a 0
0 a−1

)
,

TM (X) = X

(
−1 0
0 1

)
, TP (X) = X

(
1 1
0 1

)
,

TI(X) = X

(
−1 0
0 −1

)
.

Here TR,θ(·) rotates the triangle with θ degree clockwise, and TS,a(·) scales the two edges (one connects X(1) to the origin
and the other connects X(2) to the origin) of the triangle with a and a−1 times, respectively. TM (·) mirrors the triangle with
respect to the x-axis. TP (·) transforms the triangle to another triangle with same base and height, and TI(·) transforms the the
triangle to another one that is symmetric with respect to the origin. All these transformations are known to keep the triangle
area unchanged based on elementary geometry.

Now we verify the effectiveness of the proposed method in the main body using this example.

Data. We consider the following data generation process:

X(1) ∼ N(0, I2), X(2) ∼ N(0, 2I2), X = (X(1), X(2)),

ε ∼ N(0, 1), η =
aΦ−1(π−1α) + ε√

a2 + 1
,

Y = |det(X)|+ η,

(10)

where I2 is the identity matrix of order 2, Φ(·) is the cumulative distribution function of standard normal distribution. In this
data generation process, |det(X)| is the area of the triangle formed by X(1), X(2) and the origin, and is the causal feature
in this example. Here α is the angle between (X(1) +X(2))/2 and x-axis, and is correlated with Y in certain domains, with
a a parameter that reflects this correlation. However, this correlation is a spurious correlation that changes across domains,
i.e., a is set to be different in different domains. In the training population, we pick a = −3. We then generate i.i.d. samples
of size 1, 000, denoted by {(Yi, Xi)}1000i=1 , and train a model h(X,β) with parameter β to predict Y based on these generated
samples.

Model. For any 2× 2 matrix

X =

(
X11 X12

X21 X22

)
,

let
v(X) = (1, X11, X21, X12, X22, X

2
11, X

2
21, X

2
12, X

2
22,

X11X21, X11X12, X11X22, X21X12, X21X22, X12X22)T.

The model is
hβ(X) = ReLU(βT

[1]v(X)) + βT
[2]v(X),

where β = (βT
[1], β

T
[2])

T is the model parameter. We pick this model because we have known that |det(X)| is a function of
v(X), and there is some β∗ such that hβ∗(X) = |det(X)|.

Method. Based on the essential invariant set given in Example 1, we define five invariant transformations

T1(X) =

(
cos π

12 − sin π
12

sin π
12 cos π

12

)
X, T2(X) = X

(
1.1 0
0 1.1−1

)
,

T3(X) = X

(
−1 0
0 1

)
, T4(X) = X

(
1 1
0 1

)
,

T5(X) = X

(
−1 0
0 −1

)
.



For ease of notation, we let T0(X) = X be the identity transformation. We learn the model parameter by minimizing four
different loss functions, namely, the empirical risk

1

n

n∑
i=1

(Yi − hβ(Xi))
2,

the average risk over different transformations

1

n

5∑
k=0

n∑
i=1

(Yi − hβ(Tk(Xi)))
2,

the maximal risk over different transformations

max
k=0,...,5

{
1

n

n∑
i=1

(Yi − hβ(Tk(Xi)))
2

}
,

and the RICE loss function

1

n

n∑
i=1

(Yi − hβ(Xi))
2 + λ max

k=0,...,5

{
1

n

n∑
i=1

(hβ(Xi)− hβ(Tk(Xi))
2

}
,

where n = 1000. In the implementation of RICE, for the given quantities l0, · · · , l5, we replace the maximum
maxk=0,...,5{lk} in the above losses with the softmax weighting quantity

∑5
k=0 exp(0.2lk)lk/

∑5
k=0 exp(0.2lk), for ease of

computation.

Results. The resulting model is evaluated on i.i.d. sample generated following the data generation process (10) with differ-
ent a. The following figure plots the squared prediction error of the four methods on test data with different values of a. Each
reported value is the average over 200 simulations.

Figure S1. Squared prediction error on test data from distributions with different values of a.

It can be seen that when the test distribution has similar spurious correlations as the training population, minimizing the
empirical risk performs the best among the four methods. However, it performs the worst if an opposite spurious correlation
appears in the test population. The RICE algorithm has the best worst-case performance, which is consistent with our theo-
retical analysis. Moreover, the RICE algorithm seems successfully capture the invariant causal mechanism across different
environments, as its prediction errors under different test distributions are stable and close to the variance of the intrinsic error
η.



Table S1. Hyperparameters of the proposed RICE on C-MNIST, PACS, and VLCS.

Dataset C-MNIST PACS VLCS
Learning Rate 0.1 5e-5 5e-5

Batch Size 128 32 32
Weight Decay 5e-4 0 0

Drop Out 0 0.1 0.1
Epoch 20 20 20
λ0 0.25 0.5 0.5
β1 0.9 0.9 0.9
β2 0.999 0.999 0.999

S3.2. Hyperparameters

We summarize the hyperparameters of the proposed RICE for C-MNIST, PACS, and VLCS datasets in Table S1. The
learning rate is decayed by 0.2 at epoch 6, 12, and 20.

S3.3. Ablation Study

In Section 5, for the experiments on PACS and VLCS, we collect training data from several domains for the proposed
RICE. However, our theory in Section 3.3 requires only a single domain. Thus, in this subsection, we study the performance
of RICE with single domain training data.

Our experiments are conducted on both PACS and VLCS. All the hyperparameters are set to be same with those in Section
5, except the number of training domains—we only use single domain data and hence less training samples for each single
experiment. For example, for PACS, if the test domain is sketch, then we run RICE on training data from one of the three
other domains (photo, art and cartoon) and report the accuracy on the test domain. To run RICE, the data generated by
CycleGAN are used as augmented data and in the regularization term. For a fair comparison, we do not use the CycleGAN
that transfer from training domain to test domain and adopt similar experimental settings for ERM.

The results are summarized in Figure S2. We can see that RICE performs much better than the baseline method ERM,
which verifies our theoretical conclusions in Theorem 3. Besides, the test accuracy on the target domain can be quite high
even when the model is trained using data from a single domain. For example, on VLCS dataset, when test data is from
SUN09 domain, the model trained on VOC2007 domain even exhibits a better OOD generalization than the model trained
on data from three domains. This implies that, for OOD generalization problem, the number of domains may not be crucial
to the performance as long as some representative CITs are available.

S3.4. Generated Data

Our experiments in the main body involve generating causally invariant images. In this subsection, we present visualiza-
tions of some generated images for a better understanding of the proposed algorithm.

C-MNIST Figure S3 shows some C-MNIST images. As seen from the training set, there exist spurious correlations be-
tween the colors of the foreground or background and the category. However, the correlation disappears in the test set, as the
foreground and background colors are randomly assigned.

PACS We also present some transformed data from PACS dataset generated by CycleGAN. The CycleGAN is used to
simulate CITs as we have clarified the main body of this paper. As the data in PACS come from 7 categories, for each
category we pick 4 pictures respectively from domains {photo, art, cartoon, sketch}. The transformed images are shown in
Figure S4, where the columns correspond to the styles of {photo, art, cartoon, sketch}, respectively.

Let us look at these generated data over different domains. For the generated images of the photo domain (the first column),
the trained CycleGAN tends to alter its color of foreground and add a background, especially when the original images are
from the cartoon and sketch domains. Similar trends exhibit in the generated data of the art domain (the second column).
In contrast to the two aforementioned domains, the generated cartoon data in the third column remove the background (if
exists) while keep or alter the color of the foreground. The generated sketch data (the fourth column) are more likely to be a
grayscale view of the original images. However, for each generated image, the shape of its foreground (i.e., the casual feature
to decide the category) does not change when we vary the domains.



The proposed algorithm RICE regularizes the model to encourage the model to be invariant under the CITs, i.e., invariant
to the changes of spurious features. This enables the model to be robust to the misleading signal from spurious features and
to make predictions via the casual feature. For example, for the dog images in the last row of Figure S4c, which are generated
from the images of cartoon style (the third column), the generated dog image of photo style (the first column) has a grass
background. However, RICE requires the model to exhibit similar outputs for the two images, hence breaking the spurious
correlation between dog and grass.

VLCS Similar to PACS, we present some of the domain transformed data from VLCS dataset generated by CycleGAN. We
pick 4 pictures respectively from domains {VOC2007, LabelMe, Caltech101, SUN09} for each of the 5 categories in VLCS.
Then we vary the domains of these picked data using the trained CycleGAN models. The transformed data are visualized in
Figure S5.

The generated VLCS images exhibit similar behaviors as PACS. Specifically, for a given image from a certain domain, the
CycleGAN model tends to deterministically vary the color of the background according to the domains. Thus, the reasoning
about the effectiveness of RICE on PACS also applies here.

S3.5. Benchmark algorithms

• Empirical Risk minimization (ERM) pools together the data from all the domains and then minimizes the empirical loss
to train the model. Notice that here an ImageNET pre-trained model is used.

• Marginal Transfer Learning [2] use the mean embedding of the feature distribution in each domain as an input of the
classifier.

• Group Distributionally Robust Optimization (GroupDRO) [4] minimizes the largest loss across different domains.

• Domain-Adversarial Neural Networks (DANN) [3] use adversarial networks to match the feature distribution in different
domains.

• Invariant Risk Minimization (IRM ) [1] learns a feature representation such that the optimal classifiers on top of the
representation is the same across the domains.
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(a) Photo (b) Art

(c) Cartoon (d) Sketch

(e) VOC2007 (f) LabelMe

(g) Caltech101 (h) SUN09

Figure S2. Performance of RICE and ERM on the PACS (a-d) and VLCS (e-h) datasets with training data from single domains. Figure title
indicates the test domain, and the blue dashed line represents the test accuracy when the training data are from three domains, as reported
in Section 5.



(a) Training data in C-MNIST (b) Test data in C-MNIST

Figure S3. Images of the C-MNIST dataset.



(a) original domain: photo (b) original domain: art

(c) original domain: cartoon (d) original domain: sketch

Figure S4. Synthetic data of PACS generated by CycleGAN. Columns from left to right correspond to domains of {photo, art, cartoon,
sketch}, respectively. Figure title indicates the domain of original data, based on which the data of the rest domains in the figure are
generated by CycleGAN.



(a) original domain: VOC2007 (b) original domain: LabelMe

(c) original domain: Caltech101 (d) original domain: SUN09

Figure S5. Synthetic data of VLCS generated by CycleGAN. Columns from left to right correspond to domains of {VOC2007, LabelMe,
Caltech101, SUN09}, respectively. Figure title indicates the domain of original data, based on which the data of the rest domains in the
figure are generated by CycleGAN.


