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Figure 1. Fine-grained patch classes samples of Oulu-NPU [1]
dataset.

Figure 2. Fine-grained patch classes samples of SiW [6] dataset.

Figure 3. Fine-grained patch classes samples of MSU-MFSD [11]
dataset.

1. Dataset

The samples of fine-grained patch classes from O, S, M,
C, and I dataset are shown in Fig. 1, 2, 3, 4, and 5,
respectively. Different patch classes exhibit different cap-
ture characteristics to be modelled in the patch embedding
space.

2. Ablation Study

Network Architecture. We have experimented the pro-
posed PatchNet with different network architectures, and

Figure 4. Fine-grained patch classes samples of CASIA-
FASD [12] dataset.

Figure 5. Fine-grained patch classes samples of ReplayAttack [2]
dataset.

the results on Oulu-NPU protocol 1 are shown in Tab. 1.
The model can reach competitive and SOTA performance
with similar backbones like VGG11 [9], MobileNet-V2 [8],
and ResNet18 [4]. However, we do not observe perfor-
mance improvement with larger capacity backbones like
ResNet34 [4] and ResNet50 [4]. Moreover, small back-
bones like AlexNet [5] and ShuffleNetV2 [7] do not have
enough capacity to learn robust patch features for FAS
tasks. We adopt ResNet18 to build PatchNet in all the other
experiments.
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Backbone ImageNet ACER(%) Crop160 ACER(%)
top-5(%) (Crop Patch 96) (Crop Patch 160)

AlexNet [5] 79.07 6.46 2.5
ShuffleNetV2(0.5) [7] 81.75 5.21 2.1

VGG11 [9] 89.81 1.04 0.0
MobileNetV2 [8] 90.28 1.25 0.0

ResNet18 [4] 89.08 1.04 0.0
ResNet34 [4] 91.42 1.04 0.2
ResNet50 [4] 92.86 1.04 0.0

Table 1. The ablation study on the network backbone architec-
ture. The second column shows the top-5 accuracy on the Ima-
geNet [3] classification task. The third and fourth columns show
the ACER(%) on Oulu-NPU protocol 1 with patch crop size 96
and 160, respectively.

Method M&C&O to I I&C&M to O
PatchNet 95.96 95.07

PatchNet w/ 5-shot 93.29 95.67
PatchNet w/ 10-shot 94.40 95.79

Table 2. Few-shot live reference testing on M&C&O to I and
I&C&M to O protocols. The testing score is averaged by 10 ex-
periment runs. AUC(%) score is reported.

Crop Patch Num ACER(%)
2 x 2 0.2
3 x 3 0.0
4 x 4 0.0

Center Crop 0.2

Table 3. Influence of patch numbers during testing.

Influence of Testing Strategy. As shown in Tab. 3, the
cropped patch number during testing does not have much
impact on the performance. Notably, even with only one
center crop patch, the performance is still competitive with
state-of-the-art methods. It implies that the model can make
robust decisions only from local patches cropped anywhere
inside the face region.

3. Few-Shot Reference Anti-Spoofing

As described in Sec. 4.7 in the main paper, we can lever-
age the learned patch type embedding space to perform few-
shot FAS with live features as the reference. We report the
experiments on M&C&O to I and I&C&M to O protocols in
Tab. 2. We can achieve improved performance on I&C&M
to O, both with 5-shot and 10-shot live samples as the ref-
erence. However, for M&C&O to I protocol, the few-shot
performance is inferior to the original one. We suspect that
it is due to the low sensor resolution of I dataset, which re-
sults in the difficulty for modeling the intrinsic cues from
the captures.

4. Visualizations

The t-SNE [10] visualizations of domain generalization
protocols O&C&I to M, I&C&M to O, and M&C&O to I
are shown in Fig. 6, 7, and 8.

Figure 6. The t-SNE visualizations of normalized patch features in
cross-dataset protocol O&C&I to M. The fine-grained patch class
is denoted by (Dataset)(SensorID) (Liveness)(MediumID).

Figure 7. The t-SNE visualizations of normalized patch features in
cross-dataset protocol I&C&M to O. The fine-grained patch class
is denoted by (Dataset)(SensorID) (Liveness)(MediumID).
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