
Supplementary to RBGNet

In the supplementary material, we first elaborate on fine
sampling (§A). Then, more implementation details and ray-
based representation discussion are provided in §B and §C.
Finally, we present per-category evaluation, visualization of
positive anchor points and quantitative results from §D.1 to
§D.3. We also discuss the limitation of RBGNet in §E.

A. Details on Fine Sampling
In this section, we will provide more technical details

on fine sampling. After obtaining coarse point masks,
M(c) = {m(c)

n,k}
Kc,N
k=1,n=1, we generate fine anchor points bi-

ased towards the dense part of its corresponding object. To
achieve this goal, we apply inverse transform sampling to
uniformly generate Kf anchor points set Q(f) = {q(f)k }Kf

k=1

on positive regions of the nth ray (we remove the subscript
n of Q(f)

n for simplicity) based on the predicted coarse point
masks {m(c)

k }Kc

k=1.
To be specific, we first normalize the coarse point masks

as m̂
(c)
k = m

(c)
k /

∑Kc

j=1 m
(c)
j to produce a piecewise-

constant probability density function (PDF). Then we trans-
late it into the cumulative distribution function (CDF). Fi-
nally, sampling with the CDF at uniform steps concentrates
samples around regions with positive coarse point masks.

To further illustrate it, we provide a demo case and vi-
sualize it in Fig.1. The number of coarse and fine anchor
points on each ray is 8 and 10 respectively.

• The predicted coarse point masks of nth ray are:

{m(c)
k }Kc

k=1 = {0, 1, 0, 1, 0, 0, 1, 0}. (1)

• We compute the piece-wise PDF by normalizing m
(c)
k :

{m̂(c)
k }Kc

k=1 = {0., 1/3, 0., 1/3, 0., 0., 1/3, 0.}. (2)

• Then we convert PDF to CDF, {C(c)
k }Kc

k=1

{C(c)
k }Kc

k=1 = {0., 1/3, 1/3, 2/3, 2/3, 2/3, 1., 0.}. (3)

• Finally, sample 10 points based on the CDF at uni-
form steps and inverse them to original distribution.
As demonstration in Fig.1, the relative distance of fine
points from object center are as follows:

{q̂(f)k }Kf

k=1 = {0.1625, 0.2000, 0.2375, 0.4000,
0.4375, 0.4750, 0.7625, 0.8000,

0.8375, 0.875} ×RayScale.

(4)
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Figure 1: One case for visualization of fine sampling.

layer name input layer κ α β MLP Channels
sa2 sa1 1024 896 128 [256, 256]
sa3 sa2 512 448 64 [256, 256]
sa4 sa3 256 224 32 [256, 256]

Table 1: Backbone network architecture: FBS parameters.

B. Implementation Details.

B.1. RBGNet architecture details.

As mentioned in the main paper, the RBGNet architec-
ture consists of a backbone with foreground biased sam-
pling, a voting layer, a ray-based feature grouping module
and a proposal module.

The backbone network, based on the PointNet++ archi-
tecture, has four set abstraction layers and two feature up-
sampling layers. We follow the same layer parameters (e.g.
ball-region radius, number of sample points and MLP chan-
nels) as VoteNet [5]. To sample points biased towards ob-
ject surface, we append a segmentation head for estimating
the foreground confidence of each point. The detailed layer
parameters are shown in Table 1. The voting module is the
same as VoteNet. Note that, in training stage, we gener-
ate M proposals from the votes by vote FPS (samples M
clusters based on votes’ XYZ), in test stage, we apply vote
FPS on ScanNet V2 and seed FPS on SUN RGB-D (sample
on seed XYZ and then find the votes corresponding to the
sampled seeds).

The ray-based feature grouping module consists of two
parts, Ray Point Generation and Feature Enhancement by
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cab bed chair sofa tabl door wind bkshf pic cntr desk curt frig showr toil sink bath ofurn mAP
VoteNet [5] 47.87 90.79 90.07 90.78 60.22 53.83 43.71 55.56 12.38 66.85 66.02 52.37 52.05 63.94 97.40 52.32 92.57 43.37 62.90

MLCVNet [8] 42.45 88.48 89.98 87.40 63.50 56.93 46.98 56.94 11.94 63.94 76.05 56.72 60.86 65.91 98.33 59.18 87.22 47.89 64.48
BRNet [2] 49.90 88.30 91.90 86.90 69.30 59.20 45.90 52.10 15.30 72.00 76.80 57.10 60.40 73.60 93.80 58.80 92.20 47.10 66.10

H3DNet* [10] 49.40 88.60 91.80 90.20 64.90 61.00 51.90 54.90 18.60 62.00 75.90 57.30 57.20 75.30 97.90 67.40 92.50 53.60 67.20
Group-free [3] 55.40 86.60 91.80 86.60 73.30 54.50 49.40 47.70 13.10 63.30 82.40 63.30 53.20 74.00 99.20 67.70 91.70 55.80 67.20

Ours 52.62 91.34 93.07 89.71 73.57 60.10 51.96 53.53 20.01 72.65 82.57 63.58 59.79 76.03 99.28 74.79 92.67 55.88 70.20

Table 2: 3D object detection scores per category on the ScanNetV2 dataset, evaluated with mAP@0.25 IoU. * means that
H3DNet [10] only provide the checkpoint with 4 PointNet++ backbones.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt frig showr toil sink bath ofurn mAP
VoteNet [5] 14.62 77.85 73.11 80.49 46.54 25.09 15.98 41.85 2.50 22.34 33.35 25.02 31.04 17.58 87.75 23.05 81.60 18.66 39.91

H3DNet* [10] 20.50 79.70 80.10 79.60 56.20 29.00 21.30 45.50 4.20 33.50 50.60 37.30 41.40 37.00 89.10 35.10 90.20 35.40 48.10
Group-free [3] 23.80 77.20 81.60 65.10 62.80 35.00 21.30 39.40 7.00 33.10 66.30 39.30 43.90 47.00 91.20 38.50 85.10 37.40 49.70

BRNet [2] 28.70 80.60 81.90 80.60 60.80 35.50 22.20 48.00 7.50 43.70 54.80 39.10 51.80 35.90 88.90 38.70 84.40 33.00 50.90
Ours 30.69 80.95 86.48 84.82 66.45 40.37 29.59 48.60 7.96 44.76 59.14 40.83 44.80 39.78 92.92 45.30 90.90 41.49 54.21

Table 3: 3D object detection scores per category on the ScanNetV2 dataset, evaluated with mAP@0.50 IoU. * means that
H3DNet [10] only provide the checkpoint with 4 PointNet++ backbones.

layer name Input channel MLP Channels
F (c)

point 5×32 [32,]
F (f)

point 3×32 [32,]
F (c)

ray 66×32 [256, 128]
F (f)

ray 66×32 [256, 128]
Ffuse 256 [256, 128]

Table 4: Detailed layer parameters of Feature Enhance
module. In our case, the number of rays (N ), coarse points
(Kc) and fine points (Kf ) are 66, 5, and 3.

Determined Rays. After generating a set of vote cluster
centers {ci}Mi=1 based on the vote sampling and grouping,
where ci = [vi, fi] (the vote center position vi ∈ R3 and its
corresponding features fi ∈ R128), M = 256 (the number
of vote clusters). In our case, for each vote cluster, 66 rays
are emitted uniformly from the cluster center with the de-
termined angles and lengths generated in §3.2.1. We use a
MLP [128, 128] to regress the object scale of each cluster.
As for the coarse-to-fine anchor point generation step, the
number of coarse points (Kc) is 5 and fine points (Kf ) is
3. To extract local feature of each anchor point, we apply
two SA layers (coarse and fine), to aggregate the features
of these seed points within a fixed radius (r = 0.2m) sur-
rounding the query points. The two SA layers both have
a receptive field specified by r=0.2m, a MLP[128, 64, 32]
for feature transform. But coarse layer samples 8 points by
ball query operation and fine layer is 4 points. In term of
the point mask prediction, we use a MLP[32+128, 32, 2] to
estimate the positive mask based on corresponding cluster
features and local features. In Feature Enhancement mod-
ule, all the functions F∗∗ are MLP networks. The detailed
layer parameters are shown in Table 4.

The proposal module is a two-layer MLP[128, 128]. We
follow [5] on how to estimate the 3D bounding boxes, ex-
cept for size prediction that we adopts class-agnostic head

to regress bounding box size directly. The layer’s output
has 5+2NH+3+NC where the first five channels are for ob-
jectness classification and center regression (relative to the
vote cluster center), 2NH channels are for heading bins clas-
sification and offsets regression, 3 is the scale regression
for height, width and length, NC is the number of semantic
classes. In SUN RGB-D: NH = 12, NC = 10, and in Scan-
Net: NH = 1, NC = 18, due to the axis aligned bounding
box.

B.2. RBGNet loss function details.

As mentioned in the main paper, our model is trained
end-to-end with a multi-task loss including foreground bi-
ased sampling Lfbs, voting regression Lvote-reg, ray-based
feature grouping Lrbfg, objectness Lobj-cls, bounding box es-
timation Lbox, and semantic classification Lsem-cls losses.

L = λvote-regLvote-reg + λfbsLfbs + λrbfgLrbfg+

λobj-clsLobj-cls + λboxLbox + λsem-clsLsem-cls.
(5)

Following the setting in VoteNet [5], we use the same
loss terms Lvote-reg, Lobj-cls, Lbox and Lsem-cls, but Lbox is
class-agnostic and contains an additional corner loss de-
fined in [6] for accurate bounding box estimation,

Lbox = λsize-regLsize-reg + λcornerLcorner+

λangle-clsLangle-cls + λangle-regLangle-reg.
(6)

As discussed in §3.4, Lfbs is a cross entropy loss used
to supervise foreground sampling (see §3.2). Lrbfg is the
sum loss of ray-based feature grouping module defined as
follows:

Lrbfg = λscale-regLscale-reg + λc-clsLc-cls + λf-clsLf-cls. (7)

The balancing factors are set default as λvote-reg=10.0,
λfbs=3.0, λrbfg=10.0, λobj-cls=5.0, λbox=10.0, λsem-cls=1.0,
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bathtub bed bookshelf chair desk dresser nightstand sofa table toilet mAP
VoteNet [5] 75.50 85.60 31.90 77.40 24.80 27.90 58.60 67.40 51.10 90.50 59.10

MLCVNet [8] 79.20 85.80 31.90 75.80 26.50 31.30 61.50 66.30 50.40 89.10 59.80
H3DNet* [10] 73.80 85.60 31.00 76.70 29.60 33.40 65.50 66.50 50.80 88.20 60.10

BRNet [2] 76.20 86.90 29.70 77.40 29.60 35.90 65.90 66.40 51.80 91.30 61.10
HGNet [1] 78.00 84.50 35.70 75.20 34.30 37.60 61.70 65.70 51.60 91.10 61.60

Group-free [3] 80.00 87.80 32.50 79.40 32.60 36.00 66.70 70.00 53.80 91.10 63.00
Ours 80.68 88.41 34.56 82.79 32.09 38.76 66.77 71.06 54.55 91.37 64.10

Table 5: 3D object detection scores per category on the SUN RGB-D dataset, evaluated with mAP@0.25 IoU. * means that
H3DNet [10] only provide the checkpoint with 4 PointNet++ backbones.

bathtub bed bookshelf chair desk dresser nightstand sofa table toilet mAP
VoteNet [5] 45.40 53.40 6.80 56.50 5.90 12.00 38.60 49.10 21.30 68.50 35.80

H3DNet* [10] 47.60 52.90 8.60 60.10 8.40 20.60 45.60 50.40 27.10 69.10 39.00
BRNet [2] 55.50 63.80 9.30 61.60 10.00 27.30 53.20 56.70 28.60 70.90 43.70

Group-free [3] 64.00 67.10 12.40 62.60 14.50 21.90 49.80 58.20 29.20 72.20 45.20
Ours 65.74 68.02 12.99 65.46 12.81 25.84 54.89 59.55 32.38 74.50 47.22

Table 6: 3D object detection scores per category on the SUN RGB-D dataset, evaluated with mAP@0.50 IoU. * means that
H3DNet [10] only provide the checkpoint with 4 PointNet++ backbones.

λsize-reg=0.11, λcorner=0.33, λangle-cls=0.1, λangle-reg=0.11,
λscale-reg=0.11, λc-cls=0.2 and λf-cls=0.2. Lscale-reg, λsize-reg
and λangle-reg are all the smooth ℓ1 loss and their betas are
0.0625, 0.0625, 0.0400 separately.

B.3. Other Grouping Mechanisms

To further ablate the effectiveness of our ray-based fea-
ture grouping module, we refer several grouping strategies
in 3D object detection as baselines and compare with them
in §4.4. For a fair comparison, we only switch the feature
aggregation mechanism while all other settings remain un-
changed (e.g. backbone with FBS, vote-FPS, proposal mod-
ule). Here we give some detailed descriptions.
Voting. The voting mechanism is first introduced by
VoteNet [5]. In our implementation, it is actually the
VoteNet equipped with FBS, corner loss, vote-FPS in test
stage and optimized hyperparameters.
RoI-Pooling. For a given object proposal, the points within
the predicted box are aggregated together. We adopt the
similar implementation with [2], predict the bounding boxes
based on the voting cluster features and aggregate the points
within the corresponding boxes by max-pooling. Finally,
the aggregated features and cluster features are concate-
nated for 3D object detection.
Back-Tracing. It is first formulated in [2]. In our imple-
mentation, it is similar to RoI-Pooling described above, ex-
cept that the prediction of bounding boxes is replaced by the
maximum offsets of 6 directions. And then the points are
aggregated by the balls uniformly sampled along the rays to
enhance 3D bounding box estimation.
Group-free. We replace the ray-based feature grouping
module with a transformer network adopted in Group-
free [3]. For a fair comparison, we use vote-FPS for initial

method mAP@0.25 mAP@0.5
Reg-Ray(R66) 68.0 50.2

Our(R66) 69.6 53.6

Table 7: The average performance of different ray represen-
tations on ScanNet V2.

object candidate sampling instead of KPS. Then, the same
as group-free [3], we adopt the transformer as the decoder
to leverage all the seed points to compute the object feature
of each candidate.

C. Ray-based Representation Discussion
There are many choices for anchor point generation,

such as classification [4] and regression [7, 9].

• Regression: Given the center and surface points of an
object, they want to represent the shape by polar coordi-
nates. The length of n rays can be computed easily. Then,
the model regresses the length of each ray and captures
the points when the ray terminates somewhere.

• Classification: Given an instance, model predicts far
bounds of all rays and samples a fixed number of po-
tential query points on each ray, and then extracts local
features and classifies those points whether belong to cor-
responding object to generate reasonable anchor points.
Our model adopts this way and we will discuss why do
we choose it.

In 2D perception community, some methods also represent
object shape by rays [7, 9] in regression way, which applies
the angle and distance as the coordinate to locate points.
However, due to the particular property of point clouds, this
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Figure 2: Qualitative results of shape distribution our model learned.

regression pipeline has many problems in 3D scenario, i.e.,
i) center is outside of the object, no intersection with the
object surface at some angles, ii) limited expressive ability
on concave shape, one ray may has multiple intersections.
Compare to regression, classification pipeline is more rea-
sonable to represent point clouds and doesn’t have the above
problems, so we choose it to generate anchor points. In Ta-
ble 7, we show the results of the two representations, clas-
sification approach performs better than regression.

D. More Results

D.1. Per-class Evaluation

We evaluate per-category on ScanNet V2 and SUN
RGB-D under different IoU thresholds. Table 2 and Ta-
ble 3 report the results on 18 classes of ScanNetV2 with
0.25 and 0.5 box IoU thresholds respectively. Table 5 and
Table 6 show the results on 10 classes of SUN RGB-D
with 0.25 and 0.5 box IoU thresholds. Our approach out-
performs the baseline VoteNet [5] and prior state-of-the-art
methods Group-free [3] significantly in almost every cate-
gory. These improvements are achieved by using ray-based
feature grouping and foreground biased sampling to better
encode object surface geometry.

D.2. Visualization of Positive Anchor Points

Fig.2 shows the scores of coarse anchor points predicted
from our RBGNet in a typical SUN RGB-D scene. We
clearly see that the high responses are almost on the ob-
ject surface (bed, chair etc.) while low responses are on
the empty space or background surface. This verifies that
our method can really learn the shape distribution and boost
point-based 3D detectors.

D.3. Quantitative Results

We provide more qualitative comparisons between our
method and the top-performing reference methods, such as
Group-free [3] and VoteNet [5], on the ScanNet V2 and
SUN RGB-D datasets. Please see Fig. 3 for more quali-
tative results.

E. Limitations

Although our method achieves promising performance
on multiple datasets, there are still some limitations. Com-
pared with the previous approaches, the performance of
RBGNet is significantly better in the case of a large num-
ber of rays. However, there is a trade-off between com-
putational cost and performance improvement, as shown in
main paper. In the future, we hope to discover approaches
that can encode surface geometry more efficiently.
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Figure 3: Qualitative results on ScanNet V2(top) and SUN RGB-D(down). The baseline methods are Group-free [3] and
VoteNet [5].
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