Supplementary Materials for
RGB-Depth Fusion GAN for Indoor Depth Completion

1. Regular Downsampled Input vs. Raw input

The regular downsampled setting of most existing meth-
ods following Ma and Karaman [9] mimics well the task of
outdoor depth completion from raw Lidar scans to dense
annotations, as shown in the bottom of Fig. 1. However, for
indoor RGB-depth sensor data, directly using downsampled
input is improper: 1) The raw depth R captured by depth
sensors is dense and continuous, which is quite different
from the sparse pattern of downsampled input T*; 2) As
shown in the red box in Fig. 1, the downsampled input re-
veals ground truth depth values to the models that can not
be obtained in practice. Thus, we believe the raw input set-
ting (R = 7) is more practicable (and not only a specific
case) for indoor depth completion than 7* = 7.
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Figure 1. Depth data visualizations of indoor RGB-Depth sensors
(top, NYU-Depth V2) and outdoor Lidar scans (bottom, KITTT).

2. More Details of Pseudo Depth Maps

Section 3.5 of the main paper introduces our proposed
pseudo depth maps for training indoor depth completion
methods. In this section, we provide more details about the
design for the pseudo depth maps, including how and why
the five masking methods are used for generating pseudo
depth maps and a few more visualization results.

(1) Highlight masking. The RGB-D camera has difficulty
in obtaining depth data of shiny surfaces because IR
rays reflected from these surfaces are weak or scat-
tered [6]. Meanwhile, these smooth and shiny objects
often lead to specular highlights and bright spots in the
RGB images. Hence, we detect these highlight regions
in RGB images and mask them in depth maps to gen-
erate pseudo depth maps. We borrow from Arnold et

al. [1] for highlight detection, which has a good bal-
ance of effectiveness and efficiency.

(2) Black masking. Since dark and matte surfaces are good
absorbers and poor reflectors of radiation, the depth
map is strongly affected by these surfaces [2]. We ran-
domly mask the depth pixels whose values of R, G,
and B in the RGB images are all in [0, 5], which can
simply but directly handle some regions that are easy
to have invalid depth values.

(3) Graph-based segmentation masking. The chaotic light
reflections in the complex environment can interfere
with the return of infrared light and cause discrete and
irregular noises in depth maps. We use the graph-based
segmentation [4] to divide the RGB image into several
blocks of different sizes and mask the small blocks.

(4) Semantic masking. Some materials, such as glass,
mirror, and porcelain surfaces, easily cause scattered
infrared reflection and missing depth return values.
We utilize the semantic label information to ran-
domly cover objects probably containing these mate-
rials, such as TV, mirror, and window. We randomly
mask all pixels for one or two objects in each frame.

(5) Semantic XOR masking. Similar motivations to the
graph-based segmentation masking, we use seman-
tic segmentation to recognize complex regions in the
scene. We use the U-Net [13] network to randomly
partition 20% of the training set for semantic segmen-
tation task training and subsequently use it to semanti-
cally segment the remaining data. We take the regions
where the predicted segmentation results are different
from the ground-truth to be the complex regions, then
mask the depth values in those regions.

Fig. 2 shows the quantitative results for each downsam-
pling method. In Fig. 2(1), the highlight regions we masked
are basically the depth missing regions of the raw depth im-
ages. We only randomly mask some sporadic black areas
since the RGB image has a certain deviation from the real
color, in Fig. 2(2). Graph-based segmentation masking sim-
ulates some discrete depth loss very well of depth maps in
Fig. 2(3). In Fig. 2(4), semantic masking covers out some
objects that may cause a lack of depth values. Semantic
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Figure 2. Visualizations of the five sampling methods. (1) Highlight masking. (2) Black masking. (3) Graph-based segmentation masking.
(4) Semantic masking. (5) Semantic XOR masking. ‘All’ refers to the results of using all methods on the reconstruction of the depth map.
‘Pseudo Depth Map’ refers to the results of using all methods on the raw depth map.

XOR masking masks a wide range of regions where the pre-
dicted and ground-truth values differ in Fig. 2(5).

3. Three Training and Evaluation Settings

Settin Training Testing
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Table 1. R, 7 and P represent the raw, reconstructed, and pseudo
depth map, respectively. -* represents the random sparse sampling
with 500 valid depth pixels.

In the main paper, we set up three different test methods
and corresponding training strategies, as shown in Tab. 1.
R and 7T represent raw or incompleted depth images and
reconstructed and completed depth maps, respectively. In
the training set, due to the deficiency of a large number of
reconstructed depth maps, most methods downsample the
raw or incompleted depth images to predict the valid pixels
of raw depth maps. In our work, we use the pseudo depth
maps for training. In addition, we randomly sample 500
valid points R* to get the sparse depth map as the input fol-
lowing existing methods [8,9]. The specific three evaluation
programs are set up as follows:

e Setting A: At the training time, we use pseudo depth maps
‘P as model input, and supervise with raw depth image.

In testing, we input a raw depth map to predict the com-
plemented and reconstructed depth map, which is most
in line with the real scenario of indoor depth comple-
tion. Our method uses the pseudo depth maps, and other
methods are trained in the synthetic semi-dense sensor
data [14].

o Setting B: Although our model is not designed for sparse
scenes, we use the sparse depth map R* with randomly
sampled 500 valid depth pixels following existing meth-
ods [3, 8,9] for training to evaluate the model completion
performance. At the test time, the input is consistent with
the sampling method of training for raw depth images,
and the reconstructed depth map is used as the ground
truth for evaluation.

e Setting C: For comparing more existing methods [3,5, 7—
10, 12] of depth completion, we randomly sample the 500
pixels in the reconstructed depth map as input at the test
phase. This sampling method, despite the fact that only
500 valid points are the input, would have much better
metrics than the above two sampling methods because of
the accurate depth information obtained for all regions.

4. Object Detection after Depth Completion

We show extended experimental results using completed
depth maps for 3D object detection, of which some repre-
sentative results are shown in Section 4.4 in the main pa-
per. We compare with the depth maps generated by DeepL-
idar [12] and NLSPN [10] on the 3D object detection task.



Method | mMAP@25 mAP@50 | RMSE

VoteNet [11] 59.07 35.77 -
DeepLidar [12] + VoteNet [11] 59.73 35.49 0.279
NLSPN [10] + VoteNet [11] 47.43 26.10 | 0.267
Ours + VoteNet [ 11] 60.64 37.28 | 0.255

H3DNet [15] 60.11 39.04 -
DeepLidar [12] + H3DNet [15] | 60.35 39.16 | 0279
NLSPN [10] + H3DNet [15] 27.10 9.77 0.267
Ours + H3DNet [ 15] 61.03 39.71 | 0.255

Table 2. Comparisons of 3D object detection results with the com-
pleted depth map on SUN RGB-D. The last column is the comple-
mentary result for DeepLidar, NLSPN, and Ours.

DeepLidar [12] uses a surface normal pathway to assist
in depth map completion. NLSPN [10] learns the convo-
lutional kernel size and iteration number for propagation
to optimize the boundary depth. In Tab. 2, compared to
DeepLidar [12], our model improves more significantly in
all metrics. NLSPN [10] produces too much noise in the
completion, which causes the performance of the detector
to degrade.
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