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A. Derivation of ELBO (5)
Proof. As for the joint distribution P (X,Y ), we have:

logP (X,Y ) = log

∫
Z
P (X,Y, Z)dZ

= log

∫
Z

P (X,Y, Z)

Q(Z|X)
Q(Z|X)dZ

≥ EQ[log
P (X,Y, Z)

Q(Z|X)
]

= EQ[log
P (Y |X,Z)P (X|Z)P (Z)

Q(Z|X)
]

= EQ[logP (Y |X,Z) + logP (X|Z)]− EQ[log(
Q(Z|X)

P (Z)
)],

(1)

where Q(Z|X) is the variational distribution, and EQ denotes the expectation over Q(Z|X). �

B. Proof of Theorem 1
Proof. Consider two D-dimensional multivariate Gaussian distributions N (µ1,Σ1) and N (µ2,Σ2). Then, the product of

their PDFs can be written as follows:
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− 1

2C2 . The last formula of Eq. (2) is an unnormalized Gaussian curve with mean µ∗ = (Σ−1
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2 )−1. Then, we replace the covariance matrix with the precision matrix, and the mean

and the precision of the unnormalized Gaussian curve becomes µ∗ = Λ−1
∗ (Λ1µ1 + Λ2µ2) and Λ∗ = Λ1 + Λ2, respectively.

The theorem can be directly extended to the product of more than two multivariate Gaussian PDFs. �



C. Proof of Corollary 1
Proof. Consider two D-dimensional multivariate Gaussian distributions P1 = N (µ1,Σ1) and P2 = N (µ2,Σ2). Then,
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Based on our assumption in the paper body (left column, lines 442–445), P1 follows a multivariate Gaussian distribution, and
P2 follows a multivariate standard normal distribution. The above equation becomes − 1

2 logdet[Σ1]− D
2 + 1
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2µ

T
1 µ1.

Then, we replace µ1 and Σ1 with the mean and precision of Theorem 1, obtaining the following equation:
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Type Configuration
3D Conv #In-C: 3, #F: 64, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1
3D Conv #In-C: 64, #F: 64, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1

3D Max-Pooling K: 2× 2× 1, S: 2× 2× 1, P: 0
3D Conv #In-C: 64, #F: 128, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1
3D Conv #In-C: 128, #F: 128, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1

3D Max-Pooling K: 2× 2× 1, S: 2× 2× 1, P: 0
3D Conv #In-C: 128, #F: 256, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1
3D Conv #In-C: 256, #F: 256, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1

3D Max-Pooling K: 2× 2× 1, S: 2× 2× 1, P: 0
3D Conv #In-C: 256, #F: 512, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1
3D Conv #In-C: 512, #F: 512, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1

3D Max-Pooling K: 2× 2× 1, S: 2× 2× 1, P: 0
3D Conv #In-C: 512, #F: 512, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1
3D Conv #In-C: 512, #F: 512, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1

Table 1. Network configuration of the 3D-UNet encoder. Each 3D convolution kernel is followed by an instance normalization layer [3] and
a ReLU function, which are omitted for simplicity.

D. Configuration of LRL
LRL contains two 3D-UNet encoders that have the same network configuration (shown in Table 1), and two 3D-UNet

decoders (shown in Tables 2 and 3). Note that “#In-C”, “#F”, “K”, “S”, and “P” in these tables denote the number of channels
of input, the number of filters, the kernel size, the stride, and the padding size, respectively. The setting of “K”, “S”, and “P”
are written in the format “Height×Width× Depth”. The scale factor denotes the multiplier to the height, the width, and the
depth, when the upsampling operation takes place. To obtain the mean vector and the covariance matrix of each slice, another
two small networks were used (shown in Table 4), and they both receive the output of the 3D-UNet encoder. One will generate
the mean vector, and the other one will generate a vector, denoted as v, which is used to calculate the covariance matrix with



Type Configuration
3D Up-sampling Scale factor: 2× 2× 1

3D Conv #In-C: 1024, #F: 512, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1
3D Conv #In-C: 512, #F: 512, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1

3D Up-sampling Scale factor: 2× 2× 1
3D Conv #In-C: 512, #F: 256, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1
3D Conv #In-C: 256, #F: 256, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1

3D Up-sampling Scale factor: 2× 2× 1
3D Conv #In-C: 256, #F: 128, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1
3D Conv #In-C: 128, #F: 128, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1

3D Up-sampling Scale factor: 2× 2× 1
3D Conv #In-C: 128, #F: 64, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1
3D Conv #In-C: 64, #F: 64, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1
3D Conv #In-C: 64, #F: 3, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1

Table 2. Network configuration of the 3D-UNet decoder that is used for reconstruction. Each 3D convolution kernel is followed by an
instance normalization layer [3] and a ReLU function except for the last one, which are omitted for simplicity. The last 3D convolution
kernel is followed by a TanH function.

Type Configuration
3D Up-sampling Scale factor: 2× 2× 1

3D Conv #In-C: 1536, #F: 512, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1
3D Conv #In-C: 512, #F: 512, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1

3D Up-sampling Scale factor: 2× 2× 1
3D Conv #In-C: 512, #F: 256, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1
3D Conv #In-C: 256, #F: 256, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1

3D Up-sampling Scale factor: 2× 2× 1
3D Conv #In-C: 256, #F: 128, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1
3D Conv #In-C: 128, #F: 128, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1

3D Up-sampling Scale factor: 2× 2× 1
3D Conv #In-C: 128, #F: 64, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1
3D Conv #In-C: 64, #F: 64, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1
3D Conv #In-C: 64, #F: 2, K: 3× 3× 3, S: 1× 1× 1, P: 1× 1× 1

Table 3. Network configuration of the 3D-UNet decoder that is used for generating label masks. Each 3D convolution kernel is followed by
an instance normalization layer [3] and a ReLU function except for the last one, which are omitted for simplicity. The last 3D convolution
kernel is followed by a softmax function.

Type Configuration
3D Conv #In-C: 512, #F: 512, K: 3× 3× 1, S: 2× 2× 1, P: 1× 1× 0

Flatten Output shape: [depth, 512× h
2 ×

w
2 ]

FC #In-D: 512× h
2 ×

w
2 , #Out-D: 256

Table 4. Network for generating mean vectors or covariance matrices, which is used after the 3D-UNet encoder. “h” and “w” denote the
height and width of the input feature maps, respectively. “#In-D” and “#Out-D” represent the input dimension and the output dimension of
the FC layer, respectively.

Type Configuration
FC #In-D: 256, #Out-D: 512× h

2 ×
w
2

Reshape Output shape: [512, h
2 , w

2 , depth]
3D Transpose Conv #In-C: 512, #F: 512, K: 3× 3× 1, S: 2× 2× 1, P: 1× 1× 0

Table 5. Network for transforming the latent representation of each slice into a feature map, which is used before the 3D UNet-decoder. “h”
and “w” denote the height and width of the final output feature maps, respectively. “#In-D” and “#Out-D” represent the input dimension and
the output dimension of the FC layer, respectively.

(vvT )2 + Ic, where Ic is a diagonal matrix whose diagonal elements are equal and larger than zero 1. To transform the latent
representation of each slice into feature maps for decoders, we use another small network that is shown in Table 5.

1To compute LKL[Q(Z|X)||P (Z))], the log-determinant term requires the input matrix to be positive definite. But the covariance matrix in multivariate
Gaussian distribution only needs to be positive semi-definite, which may lead to infinite LKL[Q(Z|X)||P (Z))]. Therefore, we add the Ic to solve this issue.
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(c) 8 labeled scans and 72 unlabeled scans on the Atrial
Segmentation Challenge dataset.
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Figure 1. Ablation studies on the coefficient of different loss terms and the number of sampled latent representations.

The workflow of LRL is summarized as follows. For example, the input are volumes with the shape 128× 128× 32. Thus,
concerning an input volume X , its shape can be written as 3 × 128 × 128 × 32 (we omit the batch dimension, as we only
consider one input volume), where 3 is the number of channels of each slice in the volume, and 32 is the number of slices in the
volume, i.e., depth. X is fed to a 3D-UNet encoder, resulting in an output volume with the shape 512× 8× 8× 32. Then, the
output volume is fed to the small networks (Table 4) that are designed for generating mean vectors and the covariance matrices.
After the mean vectors and the covariance matrices are obtained, they are further used to produce latent representations
(denoted as Z) via the reparameterization trick. Z is further processed by the small network (Table 5) that is designed for
transforming the latent representation of each slice into feature maps, resulting in a volume with the shape 512× 8× 8× 32
(denoted as Zmap), and thereafter, Zmap is used for reconstructing the input volume X via the 3D-UNet decoder shown in
Table 2. At the same time, the input volume is fed to another 3D-UNet encoder to obtain the feature representation with the
shape 512× 8× 8× 32, and then the feature representation is concatenated with Zmap along the channel dimension, which is
the input to the 3D-UNet decoder shown in Table 3 for generating label masks.

E. Implementation Details
The proposed method was implemented in PyTorch [2]. The configuration of LRL is introduced above, and as for the

regular 3D-UNet with MC dropout, we keep the number of parameters similar to VNet in previous works [1, 5, 6] for fair
comparison 2, and the MC dropout is inserted into the decoder of the regular 3D-UNet. The GBDL was trained for 120 epochs
on the KiTS19 and the Liver Segmentation dataset, and for 240 epochs on the Atrial Segmentation Challenge dataset. In
the first half epochs, only the LRL was trained. Then, the LRL was fixed, and the regular 3D-UNet with MC dropout was
optimized in the second half epochs. During training, each slice of CT scans was first resized to 256× 256, and a 160× 160
center region was cropped from the slice. Then, 128× 128× 32 volumes were randomly cropped as inputs, where 32 is the
depth of the input volumes, i.e., the number of slices. We used the common data augmentation methods, including pixel

2Our regular 3D-UNet with MC dropout has 9.60M parameters while VNet has 9.44M parameters. The detailed configuration can be found in our released
code.



Figure 2. The visualization of some predicted slices from the KiTS19 dataset for different Bayesian deep learning based methods [4–6].

jittering, random rotation, and random horizontal flipping. The ADAM optimizer was used with an initial learning rate of
0.0001 and a batch size of 4, and the cosine learning rate decay strategy was used.

As for the evaluation, we used the sliding window strategy with a stride of 8× 8× 8, and the last saved model was used for
testing. We took twenty feed-forward passes for each case to get the final result and the corresponding voxel-wise epistemic
uncertainty. Each of our experimental results in the paper body was obtained based on five independent runs.

F. Hyperparameter Search
We searched the hyperparameters, including coefficients of different loss terms and the number of sampled latent represen-

tations, on the KiTS19 and the Atrial Segmentation Challenge dataset. We further took 10 CTs and 5 CTs from the their test
sets, respectively, as their validation set, in order to avoid the situation that all of the test data are involved into the search



Figure 3. The visualization of some predicted slices from the Atrial Segmentation Challenge dataset for different Bayesian deep learning
based methods [4–6].

process 3. Since it is hard to find the best combination of the coefficients, we resort to using the variable-controlling approach.
Initially, all the coefficients are set to 1.0 and only one latent representation is sampled for each feed-forward pass, and then we
sequentially changed them one by one. Every time we changed one variable, others were fixed to the initial setting. According
to the results in Figure 1, we can conclude that when λ1, λ2, and λ3 are decreased, the performance declines to some extent.
In contrast, the performance is not greatly impacted when λ1, λ2, and λ3 are increased, and the performance reaches the
peak when λ1, λ2, and λ3 are set to 1.0, 2.0, 1.0, respectively. Concerning λ4, the performance can reach the peak when it is
set to 0.005. As for the coefficient of the terms in LSeg, setting β1 and β2 to 1.0 and 2.0, respectively, can achieve the best

3Note that previous works do not hold a validation set for tuning hyper-parameters. Therefore, in this work, we took a very small number of data from the
test set for the hyper-parameter searching.



result. As for the number of sampled latent representations, we sampled M latent representations to get M pseudo-label maps
for an unlabeled sample, and the final pseudo-label map is obtained by taking the average over the M maps. We notice that
increasing M can improve the performance, but the performance gain becomes moderate when M is larger than 3. Then, we
fixed these coefficients and set M to 5 for all experiments in the paper body.

G. Visualization Results
We visualize some predicted results from the KiTS19 dataset and the Atrial Segmentation Challenge dataset in Figure 2 and

Figure 3 for different Bayesian deep learning based methods, including UA-MT [6], Double-UA [5], Tripled-UA [4], and
GBDL. Each result contains a prediction map and a corresponding uncertainty map. The uncertainty maps for the other three
methods come from their teacher models [4–6], and the brightness of each pixel in an uncertainty map is negatively associated
with the model’s confidence for predicting that pixel. According to the visualization results, when only a limited number of
training data are annotated, GBDL can still find and segment the foreground. Although there are some misclassified regions,
uncertainty maps are able to give high uncertainties to them, so that clinicians can further improve the results in a real-world
scenario.
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