
Appendix of
”Rethinking Minimal Sufficient Representation in Contrastive Learning”

Haoqing Wang*1 Xun Guo2 Zhi-Hong Deng1 Yan Lu2

1Peking University 2Microsoft Research Asia
{wanghaoqing, zhdeng}@pku.edu.cn {xunguo, yanlu}@microsoft.com

A. Proofs of theorems

In this section, we provide the proofs of the theorems
in the main text. Since the random variable z1 = f1(v1)
is the representation of random variable v1 where f1 is an
encoding function, we have

Assumption 1. Random variable z1 is conditionally inde-
pendent from any other variable s in the system once ran-
dom variable v1 is observed, i.e., I(z1, s|v1) = 0,∀s.

This assumption is also adopted in [5]. When f1 is a
deterministic function, this assumption strictly holds. And
when f1 is a random function, the information in z1 consists
of the information from v1 and the information introduced
by the randomness of function f1 which can be considered
irrelevant to other variables in the system, so this assump-
tion still holds. Next, we first present two lemmas for sub-
sequent proofs.

Lemma 1. Let zsuf1 and zmin
1 are the sufficient representa-

tion and the minimal sufficient representation of view v1 for
v2 in contrative learning respectively, we have

I(zmin
1 , v2, T ) = I(zsuf1 , v2, T ) = I(v1, v2, T ) (1)

I(zmin
1 , T |v2) = 0 (2)

Proof. 1) From the Definition 1 in the main text and the
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Assumption 1, we have

I(v1, v2, T )− I(zsuf1 , v2, T )

= [I(v1, v2)− I(v1, v2|T )]− [I(zsuf1 , v2)− I(zsuf1 , v2|T )]

= I(zsuf1 , v2|T )− I(v1, v2|T )

= [H(v2|T )−H(v2|zsuf1 , T )]− [H(v2|T )−H(v2|v1, T )]

= H(v2|v1, T )−H(v2|zsuf1 , T )

= [I(zsuf1 , v2|v1, T ) +H(v2|v1, zsuf1 , T )]

−[I(v1, v2|zsuf1 , T ) +H(v2|v1, zsuf1 , T )]

= I(zsuf1 , v2|v1, T )− I(v1, v2|zsuf1 , T )

= I(zsuf1 , v2|v1, T ) = 0

Therefore, we have

I(zsuf1 , v2, T ) = I(v1, v2, T )

The above proof process only uses the sufficiency of zsuf1

for v2, so we have

I(zmin
1 , v2, T ) = I(v1, v2, T )

2) From the Definition 2 in the main text and the Assump-
tion 1, we have

I(zmin
1 , v1|v2) = 0 I(zmin

1 , T |v1) = 0

Applying these two equations, we have

I(zmin
1 , T |v2) = I(zmin

1 , T |v1, v2) + I(zmin
1 , T, v1|v2)

= I(zmin
1 , T, v1|v2)

= I(zmin
1 , v1|v2)− I(zmin

1 , v1|T, v2) = 0

We consider the conditional entropy of the task variable
T given the representation z1.



Lemma 2. For arbitrary learned representation z1, the
conditional entropy H(T |z1) of the task variable T given
z1 satisfies

H(T |z1) = H(T )− I(z1, T |v2)− I(z1, v2, T ) (3)

Specifically, for the sufficient representation zsuf1 , the con-
ditional entropy H(T |zsuf1 ) satisfies

H(T |zsuf1 ) = H(T )− I(zsuf1 , T |v2)− I(v1, v2, T ) (4)

for the minimal sufficient representation zmin
1 , the condi-

tional entropy H(T |zmin
1 ) satisfies

H(T |zmin
1 ) = H(T )− I(v1, v2, T ) (5)

Proof. We have

H(T |z1) = H(T )− I(T, z1)

= H(T )− [I(T, z1, v2) + I(T, z1|v2)]
= H(T )− I(z1, T |v2)− I(z1, v2, T )

Applying the Eq. (1), the conditional entropy H(T |zsuf1 )
satisfies

H(T |zsuf1 ) = H(T )− I(zsuf1 , T |v2)− I(zsuf1 , v2, T )

= H(T )− I(zsuf1 , T |v2)− I(v1, v2, T )

Further, applying the Eq. (2), the conditional entropy
H(T |zmin

1 ) satisfies

H(T |zmin
1 ) = H(T )− I(zmin

1 , T |v2)− I(v1, v2, T )

= H(T )− I(v1, v2, T )

Finally, we give the proofs of Theorem 1, 2 and 3.

The proof of Theorem 1.

Proof. We decompose the Theorem 1 into three equations
and prove them in turn.
1) I(v1, T ) = I(zmin

1 , T ) + I(v1, T |v2).

I(v1, T ) = I(v1, T, v2) + I(v1, T |v2)
= I(zmin

1 , T, v2) + I(v1, T |v2)
= I(zmin

1 , T )− I(zmin
1 , T |v2) + I(v1, T |v2)

= I(zmin
1 , T ) + I(v1, T |v2)

2) I(zsuf1 , T ) = I(zmin
1 , T ) + I(zsuf1 , T |v2).

I(zsuf1 , T ) = I(zsuf1 , T, v2) + I(zsuf1 , T |v2)

= I(zmin
1 , T, v2) + I(zsuf1 , T |v2)

= I(zmin
1 , T )− I(zmin

1 , T |v2) + I(zsuf1 , T |v2)

= I(zmin
1 , T ) + I(zsuf1 , T |v2)

3) I(v1, T |v2) ≥ I(zsuf1 , T |v2) ≥ 0.
Applying the Data Processing Inequality [3] to the

Markov chain T → v1 → zsuf1 , we have I(v1, T ) ≥
I(zsuf1 , T ), so

I(v1, T |v2) = I(v1, T )− I(v1, T, v2)

= I(v1, T )− I(zsuf1 , T, v2)

≥ I(zsuf1 , T )− I(zsuf1 , T, v2)

≥ I(zsuf1 , T |v2) ≥ 0

Combining these three equations, we can get Theorem 1.

The proof of Theorem 2.

Proof. According to [4], the relationship between the Bayes
error rate Pe and the conditional entropy H(T |z1) is

− ln(1− Pe) ≤ H(T |z1)

which is equivalent to

Pe ≤ 1− exp[−H(T |z1)]

Applying the Lemma 2, for arbitrary learned representation
z1, its Bayes error rate Pe satisfies

Pe ≤ 1− exp[−(H(T )− I(z1, T |v2)− I(z1, v2, T ))]

for the sufficient representation zsuf1 , its Bayes error rate
P suf
e satisfies

P suf
e ≤ 1− exp[−(H(T )− I(zsuf1 , T |v2)− I(v1, v2, T ))]

for the minimal sufficient representation zmin
1 , its Bayes er-

ror rate Pmin
e satisfies

Pmin
e ≤ 1− exp[−(H(T )− I(v1, v2, T ))]

Note that 0 ≤ Pe ≤ 1 − 1/|T |, so we use the threshold
function Γ(x) = min{max{x, 0}, 1 − 1/|T |} to prevent
overflow.

The proof of Theorem 3.

Proof. According to [6], when the conditional distribution
p(ε|z1) of estimation error ε is uniform, Laplace and Gaus-
sian distribution, the minimum expected squared prediction
error Re becomes 1

12 exp[2H(T |z1)], 1
2e2 exp[2H(T |z1)]

and 1
2πe exp[2H(T |z1)] respectively. Therefore, we unify

them as
Re = α · exp[2H(T |z1)]

where α is a constant coefficient which depends on the con-
ditional distribution p(ε|z1). Applying the Lemma 2, for
arbitrary learned representation z1, we have

Re = α · exp[2 · (H(T )− I(z1, T |v2)− I(z1, v2, T ))]



for the sufficient representation zsuf1 , we have

Rsuf
e = α · exp[2 · (H(T )− I(zsuf1 , T |v2)− I(v1, v2, T ))]

for the minimal sufficient representation zmin
1 , we have

Rmin
e = α · exp[2 · (H(T )− I(v1, v2, T ))]

B. Choice of mutual information lower bound
estimate

In our Implementation II, we need to use a mutual infor-
mation lower bound estimate to calculate I(z, v) where v is
the original input (e.g., images) and z is the representation
(feature vectors). We consider three candidate estimates:
1) The bound of Nguyen, Wainwright and Jordan [9]

ÎNWJ(z, v) = Ep(z,v)[h(z, v)]− Ep(z)p(v)[e
h(z,v)−1] (6)

2) MINE [1]

ÎMINE(z, v) = Ep(z,v)[h(z, v)]− ln(Ep(z)p(v)[e
h(z,v)]) (7)

3) InfoNCE [10]

ÎNCE(z, v) = E

[
1

N

N∑
k=1

ln
p(zk|vk)

1
N

∑N
l=1 p(z

l|vk)

]
(8)

where (zk, vk), k = 1, · · · , N are N copies of (z, v) and
the expectation is over Πkp(z

k, vk). As we can see, when
we calculate the bound ÎNWJ and ÎMINE , we need to cal-
culate the critic h(z, v) between the representation z and
original input v. If we use a neural network to model the
critic h(z, v), we have to take the original input (e.g. im-
ages) and the representation together as the input of a neural
network. Since the distribution of the original input v and
the representation z is quite different, it is very difficult.
Therefore, we use the InfoNCE lower bound estimate.

C. More experiments
In this section, we provide more experiments to support

our work.

C.1. Results on Barlow Twins

In the main text, we provide the results on two classic
contrastive learning models: SimCLR [2] and BYOL [7].
SimCLR perfectly matches the contrastive learning frame-
work, maximizing the lower bound estimate of the mutual
information I(z1, z2). BYOL avoids the dependence on
the large amount of negative samples, and adopts predic-
tion loss and the asymmetric structure. We further verify
the effectiveness of increasing I(z, v) on Barlow Twins [12]
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Figure 1. Demonstration of the reconstruction effect of our Imple-
mentation I. We provide the original input images and the recon-
structed images for comparison. We use SimCLR contrastive loss
and take CIFAR10 as the training dataset.

which makes the cross-correlation matrix between the rep-
resentations of different views as close to the identity matrix
as possible. Although the loss functions of these contrastive
learning models are very different, they all satisfy the inter-
nal mechanism that the views provide supervision informa-
tion to each other, so they all approximately learn the mini-
mal sufficient representation. We use the same pre-training
schedule and linear evaluation protocol as in the main text
and set λ1 = λ2 = 1. For STL-10, we use the unlabeled
split for contrastive learning and the train and test split for
linear evaluation.

The results are shown in Table 1 and the best result in
each block is in bold. Increasing I(z, v) can improve the
accuracy of the learned representations in Barlow Twins in
downstream classification tasks, which indicates that our
analysis results are applicable to various contrastive losses.

C.2. Reconstructed samples

In order to show the reconstruction effect of our Im-
plementation I, we provide the reconstructed images after
training. As an example, we use SimCLR contrastive loss
and take CIFAR10 as the training dataset. The original input
images and the reconstructed images are shown in Fig. 1.
As we can see, the reconstructed images retain the shape
and outline information in the original images, so as the
obtained representations. Since we use the mean square er-
ror loss to optimize the reconstruction module, the recon-
structed images are blurry and this phenomenon is also ob-
served in vanilla variational auto-encoder [8].



Model CIFAR10 DTD MNIST FaMNIST CUBirds VGGFlower TrafficSigns
BarTwins 86.85 28.56 95.39 86.19 7.49 35.91 88.50
BarTwins+RC (ours) 86.91 28.97 96.60 86.72 7.90 38.94 90.92
BarTwins+LBE (ours) 86.38 29.54 96.72 86.88 8.47 41.44 92.76
Model STL-10 DTD MNIST FaMNIST CUBirds VGGFlower TrafficSigns
BarTwins 80.59 36.86 94.27 86.63 7.47 44.89 73.73
BarTwins+RC (ours) 82.21 36.97 94.45 86.71 7.89 46.31 78.94
BarTwins+LBE (ours) 81.13 37.32 96.33 87.13 8.08 49.82 82.08

Table 1. Linear evaluation accuracy (%) on the source dataset (CIFAR10 or STL-10) and other transfer datasets.

D. Derivation of LMIB and LIP

Federici et al. [5] and Tsai et al. [11] propose to elimi-
nate the non-shared information between views in the rep-
resentation to get the minimal sufficient representation. To
this end, they propose their respective regularization terms.
Here we derive the specific forms used in the main text.

In [5], the regularization term is

LMIB = DSKL(p(z1|v1)||p(z2|v2))

=
1

2
[KL(p(z1|v1)||p(z2|v2))

+KL(p(z2|v2)||p(z1|v1))] (9)

According to the description in their paper and the official
code 1, they model the two stochastic encoders p(z1|v1) and
p(z2|v2) as

p(z1|v1) = N (z1;µ1, diag(σ2
1)) (10)

p(z2|v2) = N (z2;µ2, diag(σ2
2)) (11)

where µ1(v1),σ2
1(v1),µ2(v2) and σ2

2(v2) are all functions of
the input (v1 or v2), diag(e) creates a matrix in which the
diagonal elements consist of vector e and all off-diagonal
elements are zeros. The regularization term has the analyti-
cal expression

LMIB = 1
4

∑d
i=1

[
σi2
1

σi2
2

+
σi2
2

σi2
1

+
(µi

1−µi
2)

2

σi2
2

+
(µi

2−µi
1)

2

σi2
1

− 2
]
(12)

where d is the dimension of z1 and z2. We want to minimize
LMIB , and when σ2

1 = σ2
2 , the term σi2

1 /σi2
2 + σi2

2 /σi2
1

takes the minimum value 2, so the regularization term be-
comes

LMIB =
1

2

d∑
i=1

(µi
1 − µi

2)
2

σi2
1

(13)

In practice, minimizing LMIB makes the variance σ2
1 and

σ2
2 very large, and the sampled representations change dras-

tically and have very poor performance in downstream
tasks. If the upper bound of the variance σ2

1 and σ2
2 is fixed,

1https : / / github . com / mfederici / Multi - View -
Information-Bottleneck

such as using the sigmoid activation function to limit it to
(0, 1), they will converge to the maximum value as the train-
ing progresses. Therefore, we might as well fix the vari-
ance and model the two stochastic encoders p(z1|v1) and
p(z2|v2) as

p(z1|v1) = N (z1; f1(v1), σ
2I) (14)

p(z2|v2) = N (z2; f2(v2), σ
2I) (15)

where I is the identity matrix, σ2 is the given variance,
fi, i = 1, 2 are deterministic encoders. This also guarantees
a fair comparison with our Implementation II. According to
the Eq. (13), the regularization term is equivalent to

LMIB = ∥f1(v1)− f2(v2)∥22 (16)

We calculate the expectation of the regularization term on
the data distribution p(v1, v2) and get

LMIB = Ep(v1,v2)[∥f1(v1)− f2(v2)∥22] (17)

In [11], the authors define the inverse predictive loss

LIP = Ep(v1,v2)[∥z1 − z2∥22] = Ep(v1,v2)[∥f1(v1)− f2(v2)∥22] (18)
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