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A. Visualization of Feature Mixtureness
We provide an intuitive understanding of the relation between Feature Mixtureness and the feature distribution distance by

manually generating two sets of features with different distribution distance. We use red and blue to represent class centers
from pre-D and eval-D, respectively. The visualization results are illustrated in Fig. 1. From (a) to (c), when the distribution
distance between pre-D and eval-D increases, Feature Mixtureness decreases accordingly. When we fix the variance of
features in pre-D and gradually enlarge the variance of features in eval-D (from (d) to (f)), Feature Mixtureness will decrease
as well. Based on the observations above, we conclude that our Feature Mixtureness can empirically measure the feature
distribution distance between pre-D and eval-D.

B. Visualization of Feature Distribution during Pretraining
In this section, we provide an illustration to establish an intuition about how intra-class variation and Feature Mixtureness

evolve during different pretraining epochs.

B.1. Intra-class Variation on pre-D

We visualize the feature distribution using samples from 10 randomly selected classes in pre-D in Fig. 2 to illustrate the
evaluation results of the intra-class variation on pre-D. Different colors represent different classes. In SL, the intra-class
variation will continuously decrease to a small value with more training epochs. In contrast, the intra-class variance of
SL-MLP and Byol retains even though we pretrain the networks at large pretraining epochs. This visualization graphically
validates that the MLP projector can enlarge the intra-class variation of features in pre-D.

B.2. Feature Mixtureness between pre-D and eval-D

We randomly select features from 5 classes in pre-D and 5 classes in eval-D, and then visualize them by t-SNE in Fig. 3.
Cold colors represent features from pre-D and warm colors represent features from eval-D. At the early pretraining stage, all
methods show high Feature Mixtureness as they cannot well classify images in pre-D. When the training epoch is becoming
larger, SL shows lower Feature Mixtureness, which indicates a larger feature distribution distance between pre-D and eval-D.
Instead, SL-MLP and Byol remain large Feature Mixtureness when the training epoch is becoming larger, which shows that
the feature distribution distance between pre-D and eval-D is not enlarged by Byol and SL-MLP.

C. Theoretical Analysis of Theory 1
C.1. Proof of Theory 1

Proof. Denote the pretrained feature extractor with the parameters θ as f(·; θ). The softmax function is built upon the feature
representation of the backbone fi = f(xi; θ) ∈ RD, where xi is an image, and D is the dimension of features. We compute
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Figure 1. Visualization of Feature Mixtureness with different manually generated feature distribution. Red and blue represent pre-D and
eval-D class centers, respectively.
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Figure 2. Evolution of intra-class variation of features in pre-D with different epochs. Different colors denote different classes. The intra-
class variation of SL will be very small when the pretraining epoch is large enough. Instead, the intra-class variation of SL-MLP and Byol
still retains even though the model is pretrained by large epochs.

the class center µ(Ij) for class j as the mean of the feature embeddings as

µ(Ij) =
1

Ij

∑
(xi,yi)∈Ij

fi, (1)
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Figure 3. Evolution of Feature Mixtureness between features from pre-D and from eval-D. Cold colors denote features from 5 classes
that are randomly selected from pre-D, and warm colors denote features from 5 classes that are randomly selected from eval-D. Feature
Mixtureness of SL continuously decrease during pretraining. Alternatively, SL-MLP and Byol keeps a relatively high Feature Mixtureness
at large pretraining epochs.

where Ij denotes the images in the j-th class. Then we define the inter-class distance Dinter(I), and intra-class distance
Dintra(I) on a datatset with C classes as

Dinter(I) =
1

C(C − 1)

C∑
j=1

C∑
k=1,k ̸=j

||µ(Ij)− µ(Ik)||2, (2)

Dintra(I) =
1

C

C∑
j=1

(
1

|Ij |
∑

(xi,yi)∈Ij

||fi − µ(Ij)||2). (3)

Substituting Eq. 1 into Eq. 2 and Eq. 3, we have

Dinter(I) =
1

C(C − 1)

C∑
j=1

C∑
k=1,k ̸=j

 1

2|Ij ||Ik|
∑

(xi,yi)∈Ij

∑
(xl,yl)∈Ik

||fi − fl||2
 , (4)

Dintra(I) =
1

C

C∑
j=1

 1

2|Ij |2
∑

(xi,yi)∈Ij

∑
(xl,yl)∈Ij

||fi − fl||2
 . (5)

Taking expectation to Eq. 4 and Eq. 5, for any pair of data (xi, yi), (xl, yl) ∈ I , we have

E(||fi − fl||2) =

{
2Dintra(I), yi = yl

2Dinter(I), yi ̸= yl
. (6)



For ease of analysis, we denote Ipre, Ieval as pre-D and eval-D, respectively. For any pair of data (x′
i, y

′
i), (x

′
l, y

′
l) ∈ Ieval in

eval-D in the same class, i.e., y′i = y′l, we have

Dintra(I
eval) =

1

2
E
(
||f ′i − f ′l ||2

)
=

1

2
E [P (yi = yl)2Dintra(I

pre) + P (yi ̸= yl)2Dinter(I
pre)]

= PDintra(I
pre) + (1− P )Dinter(I

pre),

(7)

where yi is the label of an image xi assigned by the classifier trained on pre-D, and f ′ = f(x′, θ). Here, P represents the
possibility that a pair of images in eval-D that belong to the same class is classified into the same classes in pre-D.

We denote ψ(ϕ−1(Ipre)) = Dinter(I
eval)/Dinter(I

pre) as the ratio of the model’s inter-class distance on eval-D and the
model’s inter-class distance on pre-D. When the model is optimized on pre-D, its discriminative ratio on pre-D ϕ(Ipre) be-
comes larger with the increase of Dinter(I

pre) and the decease of Dintra(I
pre). In most cases, Dinter(I

eval)/Dinter(I
pre)

is a monotonic decreasing function of ϕ(Ipre), and is a monotonic increasing function of ϕ−1(Ipre), which has been empir-
ically proven by [14]. Mathematically, it can be formulated as

ψ(ϕ−1
2 (Ipre)) > ψ(ϕ−1

1 (Ipre)), if ϕ−1
2 (Ipre) > ϕ−1

1 (Ipre). (8)

By substituting Dintra(I
eval) = PDintra(I

pre) + (1 − P )Dinter(I
pre) (Eq. 7) into the discriminative ratio inequality

ϕ2(I
eval) < ϕ1(I

eval) given ϕ2(Ipre) > ϕ1(I
pre), we have

ϕ2(I
eval) < ϕ1(I

eval) (9)

⇐⇒ D2
inter(I

eval)

D2
intra(I

eval)
<
D1
inter(I

eval)

D1
intra(I

eval)
(10)

⇐⇒ D2
inter(I

eval)

PD2
intra(I

pre) + (1− P )D2
inter(I

pre)
<

D1
inter(I

eval)

PD1
intra(I

pre) + (1− P )D1
inter(I

pre)
, (11)

⇐⇒ P <

D1
inter(I

eval)

D1
inter(I

pre)
− D2

inter(I
eval)

D2
inter(I

pre)

D1
inter(I

eval)

D1
inter(I

pre)
·
(
1− D2

intra(I
pre)

D2
inter(I

pre)

)
− D2

inter(I
eval)

D2
inter(I

pre)
·
(
1− D1

intra(I
pre)

D1
inter(I

pre)

) , (12)

⇐⇒ P <
ψ(ϕ−1

1 (Ipre))− ψ(ϕ−1
2 (Ipre))

ψ(ϕ−1
1 (Ipre))

(
1− ϕ−1

2 (Ipre)
)
− ψ(ϕ−1

2 (Ipre))
(
1− ϕ−1

1 (Ipre)
) , (13)

⇐⇒ P <
1

1− ϕ−1
1 (Ipre) +

ϕ−1
2 (Ipre)−ϕ−1

1 (Ipre)

ψ(ϕ−1
2 (Ipre))−ψ(ϕ−1

1 (Ipre))
ψ(ϕ−1

1 (Ipre))
, (14)

⇐⇒ P <
1

1− ϕ−1
1 (Ipre) + rψ(ϕ−1

1 (Ipre))
, (15)

⇐⇒ rψ(ϕ−1
1 (Ipre))− ϕ−1

1 (Ipre) < P−1 − 1, (16)

⇐⇒ dϕ−1
1 (Ipre)

dψ(ϕ−1
1 (Ipre))

ψ(ϕ−1
1 (Ipre))− ϕ−1

1 (Ipre) < P−1−1, (17)

⇐⇒ dϕ−1(Ipre)

P−1 − 1 + ϕ−1(Ipre)
<

1

ψ(ϕ−1(Ipre))
dψ(ϕ−1(Ipre)), (18)

where

r =
ϕ−1
2 (Ipre)− ϕ−1

1 (Ipre)

ψ(ϕ−1
2 (Ipre))− ψ(ϕ−1

1 (Ipre))
(19)

≈ dϕ−1(Ipre)

dψ(ϕ−1(Ipre))
, when ϕ−1

2 (Ipre)− ϕ−1
1 (Ipre) → 0. (20)



We take integration of Eq. 18 as

⇐⇒
∫ ϕ−1(Ipre)

0

dϕ−1(Ipre)

P−1 − 1 + ϕ−1(Ipre)
<

∫ ψ(ϕ−1(Ipre))

ψ(0)

1

ψ(ϕ−1(Ipre))
dψ(ϕ−1(Ipre)), (21)

⇐⇒ ln
[
ϕ−1(Ipre) + P−1 − 1

]
< ln

[
ψ(ϕ−1(Ipre)))

]
+ ln

(
P−1 − 1

ψ(0)

)
, (22)

⇐⇒ ϕ−1(Ipre) + P−1 − 1 < ψ(ϕ−1(Ipre))
P−1 − 1

ψ(0)
, (23)

⇐⇒ ϕ−1(Ipre) < 1− P−1 + ψ(ϕ−1(Ipre))
P−1 − 1

ψ(0)
, (24)

⇐⇒ ϕ−1(Ipre) < (
ψ(ϕ−1(Ipre))

ψ(0)
− 1)(P−1 − 1) (25)

⇐⇒ ϕ(Ipre) > t (26)

where the threshold t is defined as

t =

[
(
ψ(ϕ−1(Ipre))

ψ(0)
− 1)(P−1 − 1)

]−1

. (27)

According to Formulation 8, ψ(ϕ−1(Ipre)) > ψ(0) because ϕ−1(Ipre) > 0. Therefore, ψ(ϕ
−1(Ipre))
ψ(0) − 1 > 0, which

means that increasing P will lead to increasing the threshold t.

C.2. Analysis of P

In the following, we explain how P in Equation 7 can be theoretically computed, and how P negatively relates to the
feature distribution distance briefly.

C.2.1 Computational Method of P

Given a fixed backbone pretrained f(·; θ) on pre-D, we denote the classifier trained by pre-D as W = (w1,w2, ...,wCpre).
The possibility of an image x of the class j in eval-D classified by the classifier W into the class k in pre-D can be defined as

Pjk =
1

|Ievalj |
∑

(xi,yi)∈Ieval
j

exp(wk · f(x; θ))∑Cpre

k′=1 exp(wk′ · f(x; θ))
, (28)

where |Ievalj | denotes the number of images in the j-th class in eval-D. Then the probability of a pair of samples in the same
class j in eval-D classified into the same class in eval-D is

Pj =

Cpre∑
k=1

P 2
jk. (29)

The average probability of Pj is

P =
1

Ceval

Ceval∑
j=1

Pj . (30)

C.2.2 P is Negatively Related to the Feature Distribution Distance

In this part, we only use two extreme cases to briefly analyze the relation between P and the feature distribution distance.
Specifically, we first deduce the upper bound and the lower bound of P . We find that the upper bound is reached when the

feature distribution distance between pre-D and eval-D is extremely small, and the lower bound is reached when the feature
distribution distance between pre-D and eval-D is extremely large, which indicates P is negatively related to the feature
distribution distance.



For the upper bound of P ,

P =
1

Ceval

Ceval∑
j=1

Pj (31)

=
1

Ceval

Ceval∑
j=1

Cpre∑
k=1

P 2
jk (32)

≤ 1

Ceval

Ceval∑
j=1

(
Cpre∑
k=1

Pjk

)2

(33)

=
1

Ceval

Ceval∑
j=1

1 (34)

= 1, (35)

where Inequality 33 is derived by Cauchy Schwarz Inequality [27], and if and only if Pjk = 1 and Pjk′ = 0 for ∀k′ ̸= k, P
reaches its upper bound 1.

For the lower bound of P ,

P =
1

Ceval

Ceval∑
j=1

Pj (36)

=
1

Ceval

Ceval∑
j=1

Cpre∑
k=1

P 2
jk (37)

≥ 1

Ceval

Ceval∑
j=1

1

Cpre

(
Cpre∑
k=1

Pjk

)2

(38)

=
1

Ceval

Ceval∑
j=1

1

Cpre
(39)

=
1

Cpre
, (40)

where Inequality 38 is derived by Fundamental Inequality [2], and if and only if Pjk = 1
Cpre for ∀k ∈ [1, Cpre], P reaches

its lower bound 1
Cpre .

Analysis on Small Feature Distribution Distance between pre-D and eval-D. When pre-D and eval-D have small feature
distribution distance, a pair of two images (xm, y

′
m) and (xn, y

′
n) belong to the same class j in eval-D, i.e., y′m = y′n will

be classified to the same class k in pre-D when classified by W with high confidence. That is, only Pjk will have high
confidence close to 1 and Pjk′ , ∀k′ ̸= k will be close to 0, which is similar to the condition when P reaches its upper bound.

Analysis on Large Feature Distribution Distance between pre-D and eval-D. When pre-D and eval-D have large feature
distribution distance, a pair of two images (xm, y′m) and (xn, y

′
n) belong to the same class in eval-D, i.e., y′m = y′n will be

randomly classified to the classes in pre-D using W. Mathematically, Pjk ≈ 1
Cpre , which is similar to the condition when P

reaches its lower bound.
Based on the analysis above, we can conclude that P is negatively related to feature distribution distance, and larger P

often means less feature distribution distance.

D. MLP components
In this section, we provide the detailed analysis about how each component of the MLP projector influences the intra-class

variation (represented by discriminative ratio ϕpre) on pre-D, Feature Mixtureness Π between pre-D and eval-D, and feature
redundancy R. Based on SL which does not include MLP, we ablate the structure of the MLP projector by adding the input
fully connected layer, the output fully connected layer, the batch normalization layer and the ReLU layer incrementally.



(a) SL (b) 1fc (c) 2fc + BN

(d) 2fc + relu (e) BN + relu SL-MLP

Figure 4. Visualization of intra-class variation by different com-
ponents. We randomly select 10 classes in pre-D. Different col-
ors denote different classes. Comparing (a) wth (b), we can see
the fully-connected layer can slightly help enlarge the intra-class
variation. Comparing (a-b) and (d-e), we can observe the batch
normalization layer and the ReLU layer can significantly enlarge
the intra-class variation in the feature space. In general, all com-
ponents in the MLP layer is beneficial to enlarge intra-class varia-
tion, which proves their effectiveness in enhancing transferaiblity
of pretraining models.

(a) SL (b) 1fc (c) 2fc+BN

(e) BN+relu(d) 2fc+relu SL-MLP

Figure 5. Visualization of Feature Mixtureness of features pre-
trained by different MLP components. Different colors denote
different classes. Points with cold colors denote the features from
pre-D, and points with warm colors denote the features from eval-
D. Comparing (c-d) with (a-b), we can see that adding BN and
ReLU can increase Feature Mixtureness between pre-D and eval-
D. Comparing (e) with (a-d), we can conclude that BN and ReLU
play the main roles in the MLP projector as (e) shows larger
Feature Mixtureness. An MLP projector with all components
achieves the largest Feature Mixtureness.

The input fully connected layer and the output fully connected layer are both set to have hidden units of 2048 and output
dimensions of 2048 to keep same output feature dimensions as SL. All experiments are pretrained over 100 epochs. Testing
results of the discriminative ratio on pre-D, Feature Mixtureness Π and feature redundancy R are illustrated in Tab. 1.

D.1. Visualization of intra-class variation

We randomly select features from 10 classes in pre-D and visualize their intra-class variation in Fig. 4. Different colors
denote features from different classes. We specify the components in the MLP projector below each visualization image.
Comparing (a) with (b), we can see that adding a fully connected layer can slightly enlarge intra-class variation, which
indicates that linear transformation helps transferability marginally. Instead, comparing (a-b) with (c-e), we can observe that
the batch normalization layer and the ReLU layer are important components in the MLP projector, which can significantly
enlarge the intra-class variation in the feature space of pre-D. In general, comparing SL-MLP with (a-e), we can conclude
that all components in MLP projector help enlarge the intra-class variation of features in pre-D while the batch normalization
layer and the ReLU layer play the most important roles.

D.2. Visualization of Feature Mixtureness

We randomly select features from 5 classes in pre-D and 5 classes in eval-D to visualize Feature Mixtureness with different
MLP components. The results are summarized in Fig. 5. The features with cold colors come from pre-D, the features with
warm colors come from eval-D. Comparing (a) and (b), we can see adding a fully connected layer can hardly increase Feature
Mixtureness between pre-D and eval-D. Comparing (c-d) with (b), we can conclude that the batch normalization layer and the
ReLU layer can increase Feature Mixtureness between pre-D and eval-D. Comparing (b-d) with (e), we can summarize that
the batch normalization and the ReLU layer are the most important components. A batch normalization layer with a ReLU
layer can significantly increase Feature Mixtureness between pre-D and eval-D, which has already been similar to Feature
Mixtureness when the MLP projector has the complete architectural.

D.3. Quantitative Analyse of MLP components

With the discriminative ratio ϕpre, Feature Mixtureness Π and feature redundancy R defined in main text Sec. 4.2, we
quantitatively examine the effect of different components in the MLP projector. The results are presented in Tab. 1. Firstly,
the fully connected layer has little influence on three metrics. Comparing (a) and (b), when adding a fully connected layer, the
model shows slight improvement on Feature Mixtureness and feature redundancy, and slight decrease of the discriminative
ratio on pre-D. Second, non-linear layer brings considerable improvements. Comparing (b) to (d), we can summarize that



Exp
Components

Top-1 Dpre
inter/D

pre
intra Π(↑) R(↓)Input FC BN ReLU Output FC

(a) 55.9 2.034 0.515 0.0776
(b) ✓ 56.6 1.505 0.679 0.0671
(c) ✓ ✓ ✓ 61.0 1.269 0.870 0.0369
(d) ✓ ✓ ✓ 60.1 1.362 0.804 0.0654
(e) ✓ ✓ 60.5 1.045 0.846 0.0369

SL-MLP ✓ ✓ ✓ ✓ 62.5 1.124 0.871 0.0351

Table 1. Quantitative analysis of structural design of inserted MLP, including discriminative ratio on pre-D, Feature Mixtureness Π and
feature redundancy R. (b-e) denote experiments in which different components are added on the SL baseline (a). When incrementally
adding components of the MLP into SL, the distriminative ratio on pre-D and feature redundancy will decrease while the Feature Mixture-
ness will increase.

(b) SL (semantic) (d) SL-MLP (semantic) (f) Byol (semantic)

(a) SL (random) (c) SL-MLP (random) (e) Byol (random)

Figure 6. Visualization of Feature Mixtureness between pretrain-
ing dataset (pre-D) and evaluation dataset (eval-D). Different col-
ors denote different classes. Classes in pre-D are denoted by cold
colors, and classes in eval-D are denoted by warm colors. Com-
paring (a,c,e) and (b,d,f), we can conclude that large semantic gap
between pre-D and eval-D will lead to small Feature Mixtureness
between pre-D and eval-D. Comparing (b) and (d-f), we can ob-
serve that the MLP projector can increase Feature Mixtureness be-
tween pre-D and eval-D, and can bridge the semantic gap between
pre-D and eval-D.
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Figure 7. Linear evaluation accuracy on eval-D with small se-
mantic gap. Following [7, 8], we pretrain SL, SL-MLP, and
Byol on randomly chosen pre-D for 300 epochs. Compare the
transfer performance on 300 epochs, SL shows a comparable
transferability with Byol and SL-MLP when the semantic gap
between pre-D and eval-D is small. In addition, unlike what we
observe in main text Fig. 6(b), no performance drop during the
last epochs appear. SL-MLP has a similar performance with SL
from 60 to 240 epochs while has a consistently better perfor-
mance on 300 epochs.

incrementally adding a ReLU, a batch normalization layer can increase Feature Mixtureness, reduce discriminative ratio,
which could improve transferability of the pretrained model. Specifically, the ReLU layer brings a little improvement on
feature redundancy. Comparing (a,b) with (c,e), we can conclude that BN not only reduces the discriminative ratio on pre-
D, but also increases Feature Mixtureness. BN has a significant influence on future redundancy, which reduces feature
redundancy by 50% (from 0.0671 to 0.0369). Last but not least, the combination of all components achieves the best
transferability with the lowest feature redundancy, the highest Feature Mixtureness and a relatively large intra-class variation.

E. Concept Generalization Task with Small Semantic Gap
Following [22], to investigate how semantic difference between pre-D and eval-D can influence the transfer results on

Concept generalization task, we randomly choose 652 classes as pre-D and 348 classes as eval-D from ImageNet-1K to
establish a benchmark where pre-D and eval-D have small semantic gap. We denote the setting where pre-D and eval-D are
constructed as Sec. 3.1 as large semantic gap setting (dubbed as semantic), and denote the setting where pre-D and eval-D
are randomly selected as small semantic gap setting (dubbed as random).



epoch cos cos-mlp

20 47.1 45.0
40 47.8 49.6
60 50.9 52.6
80 53.5 56.5

100 53.7 59.0

Table 2. Top-1 linear evaluation accuracy on eval-D when pretraining the model on pre-D by cosine-softmax cross-entropy loss.

E.1. Visualization of Feature Mixtureness

We visualize features from pre-D and eval-D in small semantic gap setting and large semantic gap setting in Fig. 6.
Specifically, SL (random), SL-MLP (random), and Byol (random) denote feature visualization of SL, SL-MLP, and Byol
pretraining on the benchmark where pre-D and eval-D are randomly chosen. SL (semantic), SL-MLP (semantic), and Byol
(semantic) denote feature visualization of SL, SL-MLP, and Byol pretraining on the benchmark where pre-D and eval-D are
split according to semantic difference in WordNet, which is the same as main text Sec. 4.2. Our findings are two-fold. First,
comparing with (a), (c), (e), pre-D features in (b), (d), (f) have large Feature Mixtureness, which indicates semantic difference
influences the feature distribution distance between pre-D and eval-D in the feature space. Second, comparing (b) with (d),
we find that Feature Mixtureness between pre-D and eval-D is enlarged by adding an MLP projector, which indicates that the
MLP projector can significantly mitigate the feature distribution distance between pre-D and eval-D.

E.2. Quantitative Results

We first pretrain all the models on pre-D over 300 epochs, then examine linear evaluation results on eval-D. Our findings
are three-fold. Firstly, compare the top-1 accuracy on 300 epochs, SL shows a comparable transferability with Byol and
SL-MLP when the semantic gap between pre-D and eval-D is small. Second, unlike what we observe in main text Fig. 6(b),
no performance drop during the last epochs appears, which indicates that the intra-class variation of SL is not above the
threshold (defined in main text Sec. 4.3) when pre-D and eval-D have a small semantic gap. Third, SL-MLP has a similar
performance with SL from 60 to 240 epochs while has a consistently better performance on 300 epochs, which verifies the
effectiveness of the added MLP projector.

F. Replacing Softmax with Cosine-Softmax
In order to prove that our findings can be compatible with different loss functions, we replace the softmax cross-entropy

loss with the cosine-softmax cross-entropy loss in the pretraining stage. Specifically, the cosine-softmax cross-entropy loss
is defined as

Lcos(xi, yi) = − log
exp(β · cos(wyi , f(xi)))∑C
i=j exp(β · cos(wj , f(xi)))

, (41)

where wi is the i-th class prototype, β is the scale factor. Accordingly, we add an MLP projector before the classifier to
construct cosine-softmax-mlp cross-entropy loss, i.e.,

Lcos-mlp(xi, yi) = − log
exp(β · cos(wyi , g(f(xi))))∑C
i=j exp(β · cos(wj , g(f(xi))))

, (42)

where wi is the i-th class prototype, β = 30 is the scale factor. We train for 100 epochs with a warm-up of 10 epochs and
cosine decay learning schedule using the SGD optimizer. The base learning rate is set to 0.4. Weight decay of 10−4 is applied
during pretraining. We report the top-1 accuracy on eval-D in Tab. 2. The results illustrate that when the model pretrained
by cosine-softmax cross-entropy loss, adding an MLP projector can also facilitate transferability of supervised pretraining
methods.

G. Visualize Convolution Channels by Optimization
According to [29] and [1], transfer performance is largely unaffected by the high-level semantic content of the pretraining

data. To investigate that whether adding an MLP projector can influence what the convolution channels can learn. By using



Mocov1 Mocov1 w/ MLP

Byol w/o MLP Byol

SL SL-MLP

Figure 8. Convolution channels visualization of Mocov1, Mocov1 w/ MLP, Byol w/o MLP, Byol, SL and SL-MLP. Following the method
proposed in [19], we visualize the maximum response of convolution channels in layer 4 of ResNet50 pretrained with different methods.

the method proposed in [19], we visualize the maximum response of convolution channels in layer 4 of ResNet50 (seen in
main text Fig. 1) pretrained with methods without-MLP, i.e. SL, Mocov1, and Byol w/o MLP, and methods with-MLP,
i.e. SL-MLP, Mocov1 w/ MLP, and Byol. Specifically, given a backbone with fixed parameters θ as f(·; θ), we denote the
parameters before the convolution channel j as f(·; θj), we optimize the most representative sample xi of the convolution
channel j by maximizing the output logits f(x; θj), i.e., xi = argmaxx(f(x; θj)), where x is optimized from a random
initialized image x0.

As shown in Fig. 8, methods without-MLP (Mocov1, Byol w/o MLP, SL) learn more knowledge about animals from
pre-D, highlighted by red rectangles. This is due to that we select classes of organisms to construct pre-D. Instead, we find
that methods with-MLP (Mocov1 w/ MLP, Byol, SL-MLP) learn more texture information. According to [29], high-level
semantic information is less critical to transfer learning, which explains effectiveness of the MLP.



H. Detailed Training Setup
H.1. Pretraining

For SL and SL-MLP, we use the SGD optimizer with a cosine decay learning rate of 0.4 with Nesterov momentum of
0.9 to optimize all the networks and set the batch size to 1024. A 3 epochs warm-up with a starting learninig rate of 0.1 is
applied. The weight decay of ResNets, MobileNetv2, EfficientNetb2 is set to 1 × 10−4, 5 × 10−5, 1 × 10−5, respectively.
Data augmentations include random-crop (224x224), color-jitter, and random horizontal flip. For SupCon and SupCon w/o
MLP pretraining, we set the temperature parameter to τ = 0.07, and queue size to 65596. We use random-crop (224x224),
color-jitter, random gray-scale, Gaussian blur, random horizontal flip for pretraining data augmentations.

H.2. Concept Generalization Task

In unseen generalization task, we divide ImageNet-1K into two class-exclusive datasets following the hierarchical structure
built in WordNet [15] - one for pretraining (denoted as pre-D) and the other for evaluation (denoted as eval-D). Eval-D has
348 classes of instrumentality, and pre-D contains 652 classes mostly of organisms. All the networks are pretrained on pre-
D, and then examined by linear evaluation protocal on eval-D. As in [3, 12, 21], we train a linear classifier with the frozen
backbone for 100 epochs. During evaluation, images are resized to 256 pixels, after which 224× 224 center crop is used. We
optimize the cross-entropy loss with SGD optimizer with cosine decay scheduler with Nesterov momentum of 0.9 over 100
epochs, using a batch size of 4096. We finally sweep over 7 learning rate over {0.16, 0.48, 1.44, 4.8, 14.4, 48} and report the
best accuracy on the test set of eval-D.

H.3. Transfer to Other Classification Tasks

Follow the downstream image classification tasks and the evaluation methods mentioned in [11], we use 12 datasets
from different domains to evaluate the transferability of different methods, including natural [16, 18, 20], satellite [4, 10],
symbolic [13, 17], illustrative [23, 25], medical [6, 26], and texture [5]. The statistics of datasets are illustrated in Tab. 3.
Linear Evaluation. For fixed-feature linear evaluation, we add a linear layer on the frozen pretrained backbone to train the
model on the downstream datasets. A batch normalization layer is added between the backbone and linear layer. All models
are trained for 50 epochs with step learning scheduler which decreases the learning rate by 0.1 at epoch 25 and 37. 70% of
the training set is used for training and the rest is used for validation, the models are then trained with

• learning rate: 0.001, 0.01, 0.1;

• batch size: 32, 128;

• weight decay: 0, 1× 10−4, 1× 10−5.

The optimal hyperparameters are chosen based on the performance on the validation set. The top-1 accuracy is reported as
the evaluation metric.
Full Network Finetuning. In full network finetuning, the whole pretrained backbone and a linear classifier are trained on
the downstream dataset. All models are trained for 50 epochs with step learning scheduler which decreases the learning rate
by 0.1 at epoch 25 and 37. A batch normalization layer is added between the backbone and linear layer to make the extracted
features comparable among different models. The models are trained with

• learning rate: 0.001, 0.01, 0.1;

• batch size: 32, 128;

• weight decay: 0, 1× 10−4, 1× 10−5.

The optimal hyperparameters are chosen based on the performance on the validation set.
Few-shot Learning. For few-shot learning, following [24], we use a logistic regression layer on the top of the features during
meta-testing phase. The implementation from scikit-learn is used for logistic regression. Same as [11], we also provide the
mean of 600 randomly sampled tasks as the accuracy.

H.4. Object Detection on COCO

For object detection, we train Mask-RCNN [9] (R50-FPN) on COCO 2017 train split and report results on the val split.
We use a learning rate of 0.001 and keep the other parameters the same as in the 1× schedule in detectron2 [28].



Category Dataset Train Size Test Size Classes

Satellite
EuroSAT 18900 8100 10
Resisc45 22005 9495 45

Natural

CropDisease 43456 10849 38
Flowers 1020 6149 102
DeepWeeds 12252 5257 9

Symbolic
Omniglot 9226 3954 1623
SVHN 73257 26032 10

Medical
ISIC 7007 3008 7
ChestX 18090 7758 7

Illustrative
Kaokore 6568 821 8
Sketch 35000 15889 1000

Texture DTD 3760 1880 47

Table 3. Datasets used for downsteam classification tasks from different domains. Following [11], we divided these datasets into six
categories, including satellite, natural, symbolic, medical, illustrative, and texture.

Method ChestX CropDisease DeepWeeds DTD EuroSAT Flowers102 Kaokore Omniglot Resisc45 Sketch SVHN ISIC Average

5-ways 5-shots few-shot classification

SL 25.64 89.07 54.32 78.58 82.96 93.14 46.14 92.82 84.17 87.06 38.03 41.22 67.76
SL-MLP 26.89 93.45 59.08 83.04 87.16 96.88 50.77 95.73 89.00 89.84 41.96 46.76 71.71
SupCon w/o MLP 23.62 75.64 49.34 73.04 73.90 82.16 38.10 67.87 75.18 81.01 34.92 35.16 59.16
SupCon 26.18 94.09 59.36 85.02 87.97 96.55 51.02 94.49 89.01 89.75 41.67 43.48 71.55

5-ways 20-shots few-shot classification

SL 30.05 94.15 64.54 85.74 89.13 96.63 55.65 97.17 90.34 93.12 48.09 52.06 74.72
SL-MLP 32.57 97.27 70.11 89.46 92.39 98.79 61.32 98.60 94.19 93.68 54.62 58.29 78.44
SupCon w/o MLP 26.50 84.90 57.81 80.64 82.37 89.47 46.19 83.56 83.51 88.12 44.60 44.51 67.68
SupCon 31.20 97.06 69.48 90.24 92.62 98.65 61.35 98.03 93.82 95.38 54.16 54.67 78.06

Table 4. 5-ways 5-shots and 20-shots classification performance on 12 downstream datasets in terms of top-1 accuracy. Using the code
in [11], we pretrain all models over 300 epochs on ImageNet-1K. The reported accuracy is the mean of 600 randomly sampled tasks.
Average results style: best, second best.

Method ChestX CropDisease DeepWeeds DTD EuroSAT Flowers102 Kaokore Omniglot Resisc45 Sketch SVHN ISIC Average

Full-data finetuning

SL 57.71 99.87 96.88 73.78 98.60 94.31 88.80 86.37 89.55 95.90 78.46 97.07 88.11
SL-MLP 57.98 99.88 96.90 74.26 98.77 95.12 89.16 88.81 90.06 96.15 79.83 97.13 88.67
SupCon w/o MLP 57.70 99.86 96.04 74.04 98.38 94.60 87.03 85.10 90.24 95.68 80.85 97.15 88.06
SupCon 58.61 99.90 96.29 75.43 98.83 95.10 88.83 87.35 91.25 95.72 81.10 97.23 88.80

Table 5. Full-data finetuning classification performance on 12 downstream datasets in terms of top-1 accuracy. Using the code in [11], we
pretrain all models over 300 epochs on ImageNet-1K. The reported accuracy is the mean of 600 randomly sampled tasks. Average results
style: best, second best.

I. More Results
I.1. Few-shot Recognition Results

Using the code provided by [11], we pretrain all models over 300 epochs with a cosine decay learning scheduler on
ImageNet-1K, and then testing on 12 downstream datasets (shown in Tab.3). We provide 5-ways 5-shots and 20-shots results
in Tab. 4. All reported accuracy is the mean of 600 randomly sampled tasks. Comparing average results among different
methods, we observe that supervised pretraining methods with the MLP projector, i.e. SL-MLP and SupCon, outperform
their no MLP counterparts, i.e. SL and SupCon w/o MLP, on both 5-ways 5-shots and 20-shots few-shot classification tasks.



Epoch In-1K L1 L2 L3 L4 L5

SL 300 77.0 66.2 60.1 56.1 54.7 48.3
Byol 300 71.7 68.2 64.4 60 58.7 52.9
SL-MLP 300 75.6 70.4 66.2 61.8 60.8 54.4

Table 6. Original concept generalization task [22] results. SL, SL-MLP, and Byol are all pretrained on ImageNet-1K with 300 epochs.
Following [22], L1/L2/L3/L4/L5 represent five ImageNet-1K-sized datasets of increasing semantic distance from IN-1K as concept gener-
alization levels.
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Figure 9. (a) Top-1 accuracy on eval-D as a function of the number of hidden units of the added MLP projector. (b) Top-1 accuracy on
eval-D as a function of output dimension of the added MLP projector. We pretrain all the models on pre-D over 100 epochs and then
evaluate on eval-D. Both hidden units and output dimensions show slight influence on the improved transferability.

I.2. Full-data Finetuning Results

We also provide full-sample results of 12-domains transfer task in Tab. 5, SL-MLP still gets a +0.56% accuracy gain.
These consistent results show that adding an MLP on SL has large improvement on linear evaluation and observable im-
provement on fine-tuning (though relatively smaller).

I.3. Original Concept Generalization Task

We pretrain SL, SL-MLP, and Byol on ImageNet-1K with 300 epochs and use the code provided by [22] to evaluate their
transferability on five ImageNet-1K-sized datasets of increasing semantic distance from IN-1K. Results are summarized in
Tab. 6. SL-MLP is better than SL and Byol, and the improvement increases when the semantic distance increases from L1
(+4.2%) to L5 (+6.1%).

I.4. Ablation on Hidden Units and Output Dimensions

On concept generalization task, we also explore whether hidden units and output dimensions of the added MLP projector
influence the final transferability. We pretrain SL-MLP on pre-D over 100 epochs using various hidden units and output
dimensions of the added MLP projector, and report the evaluation results on eval-D (illustrated in Fig.9). We observe that,
different from other unsupervised pretraining methods, e.g. BYOL and SimCLR, where the output dimension of the MLP
projector have considerable impacts on transferability, the hidden units and output dimensions of the added MLP projector
has little influence on the performance of SL-MLP.

J. Pretrain Results on pre-D
We also provide the top-1 accuracy of SL-MLP on pre-D in Tab. 7. We remove the MLP in SL-MLP for linear evaluation

on pre-D, only the fixed backbones of SL and SL-MLP are used to train new classifiers over 100 epochs. We also report
top-1 accuracy during pretraining in which accuracy of the whole SL-MLP is reported. Which features are used to evaluate
these two metrics are illustrated in Fig. 10. As backbones and classifiers are jointly trained during pretraining, classifiers



Epochs
Top-1 accuracy during pretraining Linear evaluation accuracy of fixed backbones

SL SL-MLP SL SL-MLP

20 59.1 51.5 70.0 66.0
40 64.0 61.2 71.6 69.1
60 69.4 69.2 74.8 72.8
80 76.6 76.7 78.5 75.8

100 80.8 80.2 80.8 78.2

Table 7. Linear evaluation results and top-1 accuracy during pretraining on SL and SL-MLP. We remove the MLP in SL-MLP for linear
evaluation, only the fixed backbones of SL and SL-MLP are used. For top-1 accuracy during pretraining, accuracy of the whole SL-MLP
is reported.

652-D 4096-D
256-D
652-D

（a）Top-1 accuracy during pretraining

652-D 652-D

（b）Linear evaluation accuracy of fixed backbones

MLP
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Features to evaluate
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Figure 10. Evaluation of features extracted by SL and SL-MLP. (a): During pretraining, features after the classifier is used to evaluate
the accuracy on pre-D. (b): After pretraining, we use the fixed backbones from different epochs to evaluate the performance of SL and
SL-MLP.

are not well optimized at small pretraining epochs. Thus, models always achieve better performance on linear evaluation at
small pretraining epochs because linear evaluation provides more epochs for networks to optimize better classifiers on fixed
backbones. For SL, two evaluation methods display the same result at epoch 100, as they have all trained well-optimized
classifiers.

Note that SL-MLP shows slight −2.6% performance drop (80.8% to 78.2%) on linear evaluation when SL and SL-MLP
have all been pretrained over 100 epochs, which achieves closer performance gap than Exemplar-v2 [29] when compared
with SL. Besides, as SL-MLP only adds an MLP projector before the classifier, the whole SL-MLP shows almost the same
performance of SL on top-1 accuracy during pretraining at epoch 100.
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