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1. A detailed discussion of the feasible set (5)

Recall the Chebyshev’s inequality for a random variable X states that P (|X − E[X]| ≥ ϵ) ≤ Var(X)
ϵ2 . In our case,

X = 1
N ∥Φ(x)−(Φ(x)+n)∥22 = 1

N

∑N
i=1 n

2
i , where n = [ni]

N
i=1 denotes the vector of i.i.d. random variables ni ∼ N (0, σ2).

Recall the second and fourth moment of ni is σ2 and 3σ4, thus, we have E[X] = σ2 and

Var(n2
i ) = E[n4

i ]− σ4 = 2σ4 =⇒ Var(X) = (2σ4)/N

which leads to P (|X − E[X]| ≥ ϵ) ≤ 2σ4

Nϵ2 . Let ϵ = 0.1σ2. Then, 0.9σ2 ≤ X ≤ 1.1σ2 with probability at least 1− 200
N . As

N = O(104) in our case, Thereofre, we define the feasible set as (5) in our paper.

2. Proof of Theorem 3.1
In this section, we present the detailed proof of the main result stated in the main manuscript. Recall that the proposed

method is built on the stochastic differential equation (SDE) defined by

dθt = −∇L(θt)dt+ β exp(c0(
σ2

L(θt)
− 1))dWt. (1)

In this section, we derive the stationary distribution derived from the above dynamics.

Theorem 3.1 (Stationary distribution). Define the density function of θt as p(θ; t) where θt is determined by (1) with random
initialization. Then the stationary distribution for θ can be explicitly expressed as

p∞(θ) ∝ exp[−G(L(θ))− 2c0
σ2

L(θ)
],

where G(s) := 2
β2

∫
exp(−2c0(

σ2

s − 1))ds is a function defined through indefinite integral.

Proof. Denote

A(θt) = −∇L(θt) ∈ Rn and B(θt) = β exp(c0(
σ2

L(θt)
− 1))In ∈ Rn×n, (2)

where In is an identity matrix, we have then

dθt = A(θt)dt+B(θt) · dWt.

The dynamics of probability current p(θ, t) is governed by the Fokker-Plank equation

d

dt
p(θ, t) +

n∑
i=1

∂θiJi(θ, t) = 0, (3)

1



where

Ji(θ, t) = Ai(θ)p(θ, t)−
1

2

n∑
j=1

∂

∂θj
[B2(θ)i,jp(θ, t)], i = 1, . . . , n

and B2(θ) = B(θ) ·B(θ)⊤.
Consider the stationary distribution p∞(θ) := p(θ, t) with t → ∞ and replace p(θ, t) by p∞(θ), we have

n∑
i=1

∂θiJi(θ, t) = 0.

We further require
Ji(θ, t) = 0, for all i.

Then, we have

p∞(θ)A(θ) =
1

2

∑
j

∂j(p∞(B(θ)B(θ)⊤)j) =
1

2
p∞[B(θ)B(θ)⊤ · ∇] +

1

2
B(θ)B(θ)⊤ · ∇p∞.

By direct calculation, we have

∇ log p∞(θ) = (B(θ)B(θ)⊤)−1[2A(θ)− (B(θ)B(θ)⊤ · ∇)].

Substituting the explicit form of A(θ) and B(θ) (2) into above equality, we have

∇ log p∞(θ) =
1

β2
exp(−2c0(

σ2

L(θ)
− 1))[2∇L(θ)−∇(β2 exp(2c0(

σ2

L(θ)
− 1)))]

=
2

β2
exp(−2c0(

σ2

L(θ)
− 1))∇L(θ)−∇2c0(

σ2

L(θ)
) := Z(θ).

Noted that the vector function Z(θ) satisfies
∂iZj(θ) = ∂jZi(θ),

thus Z(θ) is integrable. Hence the stationary distribution exists and it satisfies

p∞(θ) ∝ exp(G(L(θ))− 2c0σ
2

L(θ)
)

with G(s) := 2
β2

∫
exp(−2c0(

σ2

s − 1))ds.
For the uniqueness, consider the KL divergence between pt(θ) and p∞(θ):

F (t) := KL(pt(θ), p∞(θ)) =

∫
pt(θ) ln(

pt(θ)

p∞(θ)
)dθ.

Then
∂tF (t) =

∫
∂tpt ln(

pt
p∞

)dθ +

∫
pt∂t ln

pt
p∞

dθ =

∫
∂tpt ln(

pt
p∞

)dθ

The Fokker-Plank equation is

∂tpt(θ) = −
∑
i

∂i(pt(θ)Ai(θ)) +
1

2

∑
i,j

∂i,j(ptB(θ)2i,j).

Substituting this equation into to ∂tF (t), we have

∂tF (t) =
∑
i

∫
pt(θ)[Ai(θ)∂i ln(

pt(θ)

p∞(θ)
)dθ +

∑
i,j

∫
B2

i,j(θ)∂i,j ln(
pt(θ)

p∞(θ)
)]dθ.



Noted that
∂i ln

pt
p∞

=
p∞
pt

∂i(
pt
p∞

)

∂i,j ln(
pt
p∞

) = (
p∞
pt

)2[∂i,j(
pt
p∞

)(
pt
p∞

)− ∂i(
pt
p∞

)∂j(
pt
p∞

), ]

we have
∂tF (t) = −Ept [∥∇θ ln(

pt
p∞

)∥2B2 ],

where for any column vector x ∈ Rn, ∥x∥2B2 = x⊤B2x. Thus as long as ∇θ ln(
pt

p∞
) ̸= 0, we have ∂tF (t) < 0. Suppose

pt → p′∞, because F (t) is lower bounded, when t → ∞, ∇θ ln(
p′
∞

p∞
) = 0. So

p′∞(θ) = p∞(θ).

The result provides the uniqueness of the stationary distribution.

2. Robustness of ASGLD to possible estimation error of noise level of measurement
The propose method requires the prior of noise level of the measurement, the standard deviation (s.t.d.). As in practice,

noise level usually is estimated either by empirical data or some estimator, the estimation might not be exact. In the experiment,
we show how robust of the proposed method to possible estimation error of measurement. The experiment is conducted on CS
acquisition for natural image. Different noise levels are used by ASGLD, where the truth noise level is σ = 10. See Table 1
for the results on the dataset Set11 [12] under 3 different sampling rates, in the presence of AGWN with σ = 10. It can be
seen that the proposed ASGLD is robust to such estimation error, the performance impact is negligible with 10% error ratio,
and remains small even with 20% error ratio.

Table 1. The results from the ASGLD with different inputs of the estimated noise level σ̃2.

σ̃2 0.8σ2 0.9σ2 σ2 1.1σ2 1.2σ2

40% 30.72 30.98 31.11 31.13 31.09
25% 29.15 29.29 29.35 29.37 29.36
10% 25.87 25.94 26.02 26.07 26.02

3. Visual inspection of more results from the experiment on phase retrieval
In this section, we visually show more results from the experiment on phase retrieval. For Gaussian measurement data, see

Figure 1 for the results of different methods on one natural image. For Poisson measurement data with α = 27 (see main
manuscript and [6] for more details), see Figure 2 and 3 for visual inspection of the results from different methods on one
sample natural image and one sample unnatural image.

It can be seen that overall, the results from the proposed ASGLD contain more details and have less noise, in comparison to
that from other self-supervised deep learning methods, as well as that from traditional and supervised methods. For example,
in comparison to two self-supervised learning methods. The results from DIP [10] contains noticeable noise and the results
from BNN [9] blurred out image details. In contrast, the results from the ASGLD method have the sharpest image details and
have least noticeable noise.

4. Visual inspection of more results for CS: Natural image acquisition and MRI
In this section, we show more examples for visual inspection of the results from different methods for CS. See Figure 4

and 5 for visual inspection of CS for natural image acquisition. For CS-MRI, see Figure 6 for the visualization of three masks
for sampling the Fourier measurement used in the experiments. See Figure 7 visual inspection of the reconstructed images
from different methods, in the case of noisy measurements (σ = 10%) with 1D Gaussian mask and sampling ratio 25%.

The observation is consistent with that for phase retrieval. For two compared unsupervised learning methods, the results
from DIP [10] has noticeable noise and the results from BNN [9] have image detailed smoothed out. Overall, the results from
the ASGLD have most image details and least noise.



WF [1] prGAMP [7] prDeep [6]

DIP [10] BNN [9] ASGLD [4] Truth

Figure 1. Phase retrieval results of ”boat” with bipolar mask and Gaussian measurement data with SNR=15.

WF [1] prGAMP [7] prDeep [6]

DIP [10] BNN [9] ASGLD [4] Truth

Figure 2. Phase retrieval results of ”couple” with bipolar mask and Poisson measurement data with α = 27.
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DIP [10] BNN [9] ASGLD [4] Truth

Figure 3. Phase retrieval results of ”Ecoli” with bipolar mask and Poisson measurement data with α = 27.

DAMP [8] TVAL3 [5] ISTA [12] MACNet [3]

DIP [10] BNN [9] ASGLD Truth

Figure 4. Visualization of different results for CS-based natural image acquisition of “Lena256”, using noisy data σ = 10 with ratio 25%.



DAMP [8] TVAL3 [5] ISTA [12] MACNet [3]

DIP [10] BNN [9] ASGLD Truth

Figure 5. Visualization of different results for CS-based natural image acquisition using noisy input σ = 10 with ratio 25%.

1D Gaussian 2D Gaussian radial

Figure 6. Three different types of sampling masks of sample ratio 25%



DIP [10] BNN [9] TFPnP [11] EI [2] ASGLD Truth

Figure 7. MRI reconstruction results with 1D Gaussian mask of sampling ratio 25% and 10% noise.
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