
Supplementary material
Self-Supervised Transformers for Unsupervised Object Discovery using

Normalized Cut

Yangtao Wang1, Xi Shen2,3,* , Shell Xu Hu4, Yuan Yuan5, James L. Crowley1, Dominique Vaufreydaz1
1 Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

2 Tencent AI Lab 3 LIGM (UMR 8049) - Ecole des Ponts, UPE
4 Samsung AI Center, Cambridge 5 MIT CSAIL

1. Analysis of backbones.
In Tab. 1, we provide an ablation study on different transformer backbones. The “-S” and “-B” are ViT small[2, 7] and

ViT base[2, 7] architecture respectively. The “-16” and “-8” represents patch sizes 16 and 8 respectively. The “MocoV3”
is another pre-trained self-supervised transformer model [3]. The τ value is set to 0.3 for MoCov3, while for Dino the best
tau value is 0.2. We observe that although the result of MoCov3 is slightly worse than the results of TokenCut with Dino,
MoCov3 still outperforms previous state-of-the-art, indicating that TokenCut can provide similar results when used with
other self-supervised Transformer architectures. Besides, the results demonstrates that a patch size of 16 provides better
results than a patch size of 8. Several insights can be found: i) TokenCut outperforms LOST for different backbones. ii) As
LOST relies on a heuristic seeds expansion strategy, the performance varies significantly using different backbones. While
our approach is more robust.

Table 1. Analysis of different backbones. We report CorLoc for unsupervised single object discovery on VOC07, VOC12,
COCO20K.

Method Backbone VOC07 VOC12 COCO20K

LOST [12] ViT-S/16 [2, 7] 61.9 64.0 50.7
TokenCut MoCoV3-ViT-S/16 [3, 7] 66.2 66.9 54.5
TokenCut ViT-S/16 [2, 7] 68.8 (↑ 6.9) 72.1 (↑ 8.1) 58.8 (↑ 8.1)

LOST [12] ViT-S/8 [2, 7] 55.5 57.0 49.5
TokenCut ViT-S/8 [2, 7] 67.3 (↑ 11.8) 71.6 (↑ 14.6) 60.7 (↑ 11.2)

LOST [12] ViT-B/16 [2, 7] 60.1 63.3 50.0
TokenCut ViT-B/16 [2, 7] 68.8 (↑ 8.7) 72.4 (↑ 9.1) 59.0 (↑ 9.0)

We provide another an ablation study on different backbones for weakly supervised object localization. Results are shown
in Tab. 2. The “-S” and “-B” designate ViT small [2, 7] and ViT base [2, 7] architecture respectively. The “-16” and “-8”
indicate patch sizes 16 and 8 respectively. For our approach, we report results with τ = 0.2, which is the same on all the
datasets. Note that LOST with ViT-S/8 achieves much worse results, because the seed expansion strategy in LOST relies on
the top-100 patches which are with lowest degrees. When the total number of patches is large, the proposed seed expansion
strategy is not able to cover entire objects. While our approach provides more robust performance on different datasets across
different backbones.
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Table 2. Analysis of backbones for weakly supervised object localization. We report Top-1 Cls, GT Loc and Top-1 Loc
on CUB [18] and Imagenet-1k [6] datasets.

Method Backbone τ
CUB [50], Acc. (%) ImageNet-1K [11], Acc. (%)

Top-1 Cls GT Loc Top-1 Loc Top-1 Cls GT Loc Top-1 Loc

LOST [12] ViT-S/16 [2, 7] - 79.5 89.7 71.3 77.0 60.0 49.0
TokenCut ViT-S/16 [2, 7] 0.2 79.5 91.8 (↑ 2.1) 72.9 (↑ 1.6) 77.0 65.4 (↑ 5.4) 53.4 (↑ 4.4)

LOST [12] ViT-S/8 [2, 7] - 82.3 78.0 64.4 79.4 45.8 38.1
TokenCut ViT-S/8 [2, 7] 0.2 82.3 89.9 (↑ 11.9) 74.2 (↑ 9.8) 79.4 66.0 (↑ 20.2) 55.0 (↑ 16.9)

LOST [12] ViT-B/16 [2, 7] - 80.3 90.7 72.8 78.3 58.6 48.3
TokenCut ViT-B/16 [2, 7] 0.2 80.3 90.0 (↓ 0.7) 72.5 (↓ 0.3) 78.3 63.2 (↑ 4.8) 52.3 (↑ 4.0)

2. Analysis of bi-partition strategies.
In Tab. 3, we study different strategies to separate the nodes in our graph into two groups using the second smallest

eigenvector. We consider three natural methods: mean value (Mean), Expectation-Maximisation (EM), K-means clustering
(K-means). We use python sklearn library for EM and K-means algorithm implementation. For EM algorithm, we set
number of iteration to 300 and each component has its own general covariance matrix. The convergence threshold is set to
1e-3. For K-means algorithm, we use “k-means++” for initialization. The maximum number of iterations is set to 300. The
convergence threshold is set to 1e-4. The result suggests that the simple mean value as the splitting point performs well for
most cases. We have also tried to search for the splitting point based on the best Ncut(A,B) value. Due to the quadratic
complexity, this approach requires substantially more computations. Thus, we finally obsolete it.

Table 3. Analysis of different bi-partition methods. We report CorLoc for unsupervised single object discovery.

Bi-partition VOC07 VOC12 COCO20K

Mean 68.8 72.1 58.8
EM 63.0 65.7 59.3

K-means 67.5 69.2 61.6

3. Datasets
We present in this section the details of the datasets used in our experiments:

• VOC07 and VOC12 correspond to the training and validation set of PASCAL-VOC07 and PASCAL-VOC12. VOC07 and
VOC12 contain 5 011 and 11 540 images respectively which belong to 20 categories. They are commonly evaluated for
unsupervised object discovery [4, 15, 16, 17, 20].

• COCO20K consists of 19 817 randomly chosen images from the COCO2014 dataset [9]. It is used as a benchmark in [16]
for a large scale evaluation.

• CUB consists of 200 bird species, including 6 033 and 5 755 images in training and test sets respectively, which is
commonly used to evaluate weakly supervised object localization [1, 5, 13, 14, 23].

• ImageNet [6] is a widely used benchmark for image classification and object detection, which consists of 1 000 different
categories. The number of images in training and validation sets are 1.3 million and 50,000 respectively. Each image
contains a single object supposed to be detected. During the training, only class labels are available.

• ECSSD contains 1 000 real-world images of complex scenes for testing.
• DUTS contains 10 553 train and 5 019 test images. The training set is collected from the ImageNet detection train/val set.

The test set is collected from ImageNet test, and the SUN dataset [21]. Following the previous works [10], we report the
performance on the DUTS-test subset.

• DUT-OMRON [22] contains 5 168 images of high quality natural images for testing.



4. Visual results for unsupervised single object discovery on VOC07 and COCO12
We show visual results for unsupervised single object discovery on VOC07 [8] and COCO12 [9, 16], which are illustrated

in Fig. 1 and Fig. 2 respectively.
For each dataset, we compare both attention maps and bounding box predictions among DINO [2], LOST [12] and

TokenCut. The attention map for DINO is extracted from the CLS token attention map of the last layer of key features. The
attention map for LOST is the inverse degree map used in LOST for detection. The TokenCut attention map is the second
smallest eigenvector of Equation 2. These results show that TokenCut provides clearly better segmentation of the object.

(a) DINO CLS
Token Attention

(b) DINO
Detection

(c) LOST Inverse
Degree Attention

(d) LOST
Detection

(e) Our Eigen
Attention

(f) Our
Detection

Figure 1. Visual results of unsupervised single object discovery on VOC07 [8] In (a), we show the attention of the CLS
token in DINO [2] which is used for detection (b). LOST [12] is mainly relied on the map of inverse degrees (c) to perform
detection (d). For our approach, we illustrate the eigenvector in (e) and our detection in (f). Blue and Red bounding boxes
indicate the ground-truth and the predicted bounding boxes respectively.
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Figure 2. Visual results of unsupervised single object discovery on COCO20K [9, 16]. In (a), we show the attention of
the CLS token in DINO [2] used for detection (b). LOST [12] mainly relies on the map of inverse degrees (c) to perform
detection (d). For TokenCut, we illustrate the eigenvector in (e) and the detection in (f). Blue and Red bounding boxes
indicate the ground-truth and the predicted bounding boxes respectively.

5. Visual results for weakly supervised object localizatio on CUB and Imagenet-1k
We present visual results for weakly supervised object localization on CUB [18] and Imagenet-1k [6] in Fig. 3 and Fig. 4

respectively.
For each dataset, we compare the attention map and bounding box prediction with LOST [12] and our approach. The

eigenvector of TokenCut provides better segmentation on objects and leads to better detection results.



(a
)L

O
ST

In
ve

rs
e

D
eg

re
e

A
tte

nt
io

n
(b

)L
O

ST
D

et
ec

tio
n

(c
)O

ur
s

E
ig

en
A

tte
nt

io
n

(d
)O

ur
s

D
et

ec
tio

n

Figure 3. Visual results for weakly supervised object localization on CUB [18]. In (a), we show the map of inverse degrees
used to perform detection with LOST (b) [12]. For TokenCut, we illustrate the eigenvector in (c) used for detection in (d).
Blue and Red bounding boxes indicate the ground-truth and the predicted bounding boxes respectively.
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Figure 4. Visual results of unsupervised single object discovery on Imagenet-1k [6]. In (a), we show LOST [12] the
map of inverse degrees, which is used to perform detection (b). For TokenCut, we illustrate the eigenvector in (c) and the
detection in (d). Blue and Red bounding boxes indicate the ground-truth and the predicted bounding boxes respectively.



6. Failure cases on CUB and Imagenet-1k
We illustrate additional failure cases in Fig. 5. Those failure cases can be organised into three categories: 1) Where

TokenCut focus on the largest salient object, whereas the annotation is highlights a different object, shown in the first and the
second column in Fig. 5. 2) Similar to LOST, Tokencut is not able to differentiate the connected objects, such as the third
and the fourth column in Fig. 5. 3) In case of occlusion, neither LOST nor our approach can’t detect the entire object, such
as the last two columns in Fig. 5.
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Figure 5. Failure cases on Imagenet-1k [6] and CUB [18]. In (a), we show LOST [12] the map of inverse degrees, which
is used to perform detection (b). For TokenCut, we illustrate the eigenvector in (c) and the detection in (d). Blue and Red
bounding boxes indicate the ground-truth and the predicted bounding boxes respectively.

7. Analysis of Graph edge weight
In this section, we provide an ablation study on graph edge weight defininig on equation 4. We have tested to directly use

the similarity score as edge weights (i.e., Eij = S(xi, xj))). However, it is not possible because there may exist negative
edge values, which violates the Normalized Cut algorithm assumption. Thus, we also tried thresholding the similarity score
(i.e., Eij = S(xi, xj) if S(xi, xj) > τ , else ϵ). We obtain 68.9% on VOC07 dataset and 72% on VOC12 dataset, which is
similar to our reported results.

8. Fine-tuning self-supervised transformers
For weakly supervised object localization, we use a pre-trained DINO model as our backbone and learn a linear classifier

on the training set where we only have access to the class labels. We freeze the backbone weights and fine-tune a linear
classifier. For CUB, We train with a SGD optimizer for 1000 epochs and set the batch size to 256 per GPU, distributed over
4 GPUs. The learning rate is linearly warmed during the first 50 epochs, then follows a cosine learning rate scheduler. We
decay the learning rate from batch size

256 ×5e-4 to 1e-6. The weight decay is set to 0.005. For ImageNet-1K, we use the models
released by DINO. Other training setups and details can be found in the supplementary material.



9. Visual results for unsupervised saliency detecion on ECSSD, DUTS and DUT-OMRON
We present visual results for unsupervised saliency detecion on ECSSD [11], DUTS [19] and DUT-OMRON [22] in

Fig. 6, 7 and 8 respectively.
For each dataset, we compare LOST segmentation, LOST + Bilateral Solver and our approch. The TokenCut provides

better segmentation on objects. The performance is further improved with Bilateral Solver.

(a) Input (b) LOST (c) LOST + BS (d) Ours (e) Ours + BS (f) GT

Figure 6. Visual results of unsupervised segments on ECSSD [11]



(a) Input (b) LOST (c) LOST + BS (d) Ours (e) Ours + BS (f) GT

Figure 7. Visual results of unsupervised segments on DUTS [19]

(a) Input (b) LOST (c) LOST + BS (d) Ours (e) Ours + BS (f) GT

Figure 8. Visual results of unsupervised segments on DUT-OMRON [22]
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