
SemAffiNet: Semantic-Affine Transformation for Point Cloud Segmentation
Supplementary Material

In this supplementary material, we provide the detailed
network architecture of SemAffiNet in Section A. Then in
Section B, we show additional experiments information, in-
cluding the datasets introduction, implementation details
and class-wise 3D point cloud segmentation mIoU on the
ScanNetV2 [4] dataset.

A. Network Architecture
A.1. The Backbone

We choose the BPNet [6] as our backbone, which
consists of a 3D sparse convolution encoder-decoder
branch and a 2D vanilla convolution encoder-decoder
branch. The 3D branch implements the sparse convolu-
tion MinkowskiEngine [2] to build a ResNet-style architec-
ture [5], while the 2D branch exploits the ResNet34 model
as the encoder. The decoder blocks of these two branches
are composed of residual blocks with interpolation opera-
tion for the 2D branch and transpose convolution for the
3D branch. Skip connections are added between the cor-
responding layers of encoders and decoders to pass low-
level information. The bidirectional links between layers
of the 2D branch and the 3D branch from the BPNet are
kept to communicate knowledge between the two modali-
ties. Please refer to the BPNet paper for further details about
the bidirectional projections between 2D and 3D features.

A.2. The Implicit Semantic-Aware Module

The ISAM is a shared Transformer [10] encoder mod-
ule that consists of Ne = 6 encoder blocks to fuse 2D and
3D multi-modal information. Each encoder block consists
of a Multi-Head Attention layer with 8 heads, two Layer-
Norm layers and a Feed Forward layer. The input to the
Transformer encoder is the concatenation of the high-level
features from both 2D and 3D branches.

A.3. The Explicit Semantic-Aware Module

We design two similar explicit semantic-aware modules
(ESAM) for 2D and 3D branches respectively. We wrap
the learning parameters of ESAM into a Transformer [10]
decoder module, predicting semantic-affine parameters and
semantic class masks. Then semantic-affine transforma-
tions are then applied to multiple mid-level layers of the
backbone decoder.

The Transformer decoder consists of Nd = 6 decoder
blocks. Each decoder block consists of a Multi-Head Atten-

tion layer with 8 heads, three LayerNorm layers, a Multi-
Head Cross Attention layer with 8 heads and a Feed For-
ward layer. The input to the Transformer decoder is the
output of the ISAM in the corresponding modality and the
learnable class queries of shape (N, dh), where N is the
number of classes and dh = 128 is the hidden dimension.
The position embeddings for the 2D branch are learnable
embeddings with dh dimensions. We obtain the position
embeddings for the 3D branch by feeding the coordinates
of 3D point clouds to an MLP block with 3 linear layers.

The output features hu of shape (N, dh) from the
Transformer decoder layer u are prepared for predicting
semantic-affine parameters and the output feature h−1 from
the final layer of the Transformer decoder are used for pre-
dicting semantic class masks. Firstly, the output features
of the Transformer decoder h−1 are fed through an MLP
block with 3 linear layers to get the class masks M of shape
(N, dm), where dm = 128 is the class mask dimension.
Secondly, the intermediate output features hu of the Trans-
former decoder layer u are fed through two separate MLP
blocks with 5 linear layers to obtain class-specific affine pa-
rameters si,bi for the backbone decoder layer i, where the
correspondence between i and u is u = i+ 2.

The Semantic-Affine Transformation is implemented
to 3 mid-level layers of the backbone decoders. Once ob-
taining the backbone decoder feature f i at layer i, we can
calculate the per-point or per-pixel classification prediction
confidence as Ai = Mf i. Then the semantic-affine trans-
formation parameters for each point Si, Bi can be calcu-
lated via Equation(1) in our main paper according to si,bi

and Ai. Then we transform the normalized feature f̂ i
j of the

backbone decoders with Equation(2) in our main paper to
enhance semantic information of mid-level features.

B. Additional Experiments Information

B.1. Datasets Introduction

We evaluate our SemAffiNet with both point cloud se-
mantic segmentation task on the ScanNetV2 dataset and
RGB-D image segmentation task on the RGB-D NYUv2
dataset. We also verify the generalization ability of the
proposed semantic-affine transformation on pure 3D S3DIS
dataset and pure 2D Cityscapes dataset. In this subsection,
we will introduce these datasets in detail.

ScanNetV2 [4] is one of the most commonly used indoor
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Table 1. The class-wise segmentation results on the 3D point cloud segmentation task of the ScanNetV2 [4] dataset. We compare the
proposed SemAffiNet with the BPNet [6] baseline under both 5cm and 2cm settings.

Method mIoU bath bed bkshf cab chair cntr curt desk door floor other pic fridge shower sink sofa table toilet wall window

BPNet (5cm) 70.6 85.6 81.6 79.8 68.7 89.9 66.3 60.0 69.2 58.6 94.6 58.0 20.9 54.7 64.9 68.4 79.7 76.6 91.4 82.9 59.4
SemAffiNet (5cm) 72.1 85.9 80.8 82.7 69.9 90.7 65.6 66.3 71.8 61.7 94.5 56.9 26.0 52.0 71.4 66.0 82.3 76.8 92.6 83.8 65.0

BPNet (2cm) 72.5 86.7 79.5 80.1 66.9 90.8 62.3 74.9 69.3 63.3 95.0 56.3 34.1 55.6 71.5 65.9 83.1 73.7 92.6 84.9 63.5
SemAffiNet (2cm) 74.5 88.5 82.1 81.6 69.9 91.6 67.2 79.2 70.0 67.3 95.3 58.0 32.6 58.3 70.9 70.5 83.1 77.4 94.5 85.9 65.3

scenes datasets. It consists of over 1500 scans of indoor
scenes annotated with 20 commonly seen semantic classes.
The RGB-D video dataset provides both 2D image-level
color data and 3D point-cloud geometry data, thus being
robust and comprehensive for 3D scene understanding. We
follow the official split to train on 1201 training scans and
test on 312 validation scans.

S3DIS [1] is another indoor scene dataset. It contains dense
3D point clouds extracted from 6 large-scale areas scanned
from 271 rooms in 3 buildings and is annotated by 13 se-
mantic classes. We follow the common protocol to split
Area 5 as the test set and use other Areas for training.

NYUv2 [7] is a popular RGB-D dataset that focuses on 2D
image segmentation. It consists of 1,449 pairs of aligned
RGB and depth images and we follow the official split to
train on 795 samples and leave 654 for testing. We con-
vert the depth image to pseudo point clouds according to
camera pose, and the problem is transformed into 3D-2D
multi-modality segmentation as ScanNetV2.

Cityscapes [3] is an outdoor 2D street-scene dataset that
contains 2975 train images, 500 validation images and 1525
test images. The images have 1024*2048 resolutions and
there are 19 classes. We do not use additional 20k images
with coarse annotations.

B.2. Implementation Details

We implement our proposed SemAffiNet architecture
with PyTorch [8] and utilize SGD optimizer [9] with base
learning rate 2e−2 and weight decay 1e−4. The learning
rate of parameters in ISAM and ESAM is reduced by a fac-
tor of 0.1 for more stable training. We implement a squared
learning rate scheduler with a warming up process. We
train the model for 100 epochs with batch size 16. The loss
weights for vanilla 3D and 2D segmentation Cross Entropy
loss are 1 and 0.1 respectively, following BPNet settings.
The loss weights for the auxiliary mid-level Binary Cross
Entropy loss for 3D and 2D branches are kept at 1 for our
experiments.

B.3. Class-wise Segmentation Results

The class-wise segmentation results on the 3D point
cloud segmentation task of ScanNetV2 [4] validation set are

shown in Table 1. We compare the proposed SemAffiNet
with the BPNet baseline under both 5cm and 2cm settings.
From the class-wise segmentation results, we can conclude
that our SemAffiNet achieves a higher IoU on most cate-
gories and a higher mIoU than the BPNet baseline.
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