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1. Implementation Details
In this section, we first discuss the detailed structures of

the CVAE models used in our framework. Then we discuss
the training and inference details of these models.

1.1. Network Architecture.

The encoders and decoders of the action conditioned
pose generator in Section 3.2, Place Refiner in Section 3.2,
and Neural Mapper in Section 3.3 share the exactly same
architectures, which are all two-layer Multilayer Perceptron
(MLP). The encoder takes the 256-dim features encoded by
the fully-connected layers and predicts the mean µ ∈ R32

and the standard deviation σ ∈ R32 for a Gaussian Distri-
bution. We sample the latent code z from this distribution
for the decoder during training.

For the motion completion network in Section 3.4, we
use the Transformer [12] as the basic structure as [9]. To
be specific, we use two fully connected layers to encode all
inputs to 256-dimension features. The encoder predicts the
mean µ ∈ R32 and the variance σ ∈ R32 for a Gaussian Dis-
tribution as the CVAE model for action conditioned poses.
Following [9], we set 8 layers of the Transformer network
for the encoder and decoder.

1.2. Training and Inference Details.

Scene-Agnostic Pose Synthesis. Firstly, we show how to
train the CVAE model for scene-agnostic pose synthesis in
Section 3.2. As the standard VAE [7] model, the training
objective consists of two parts. The first one is the recon-
struction loss between the reconstructed human poses and
the input human pose. The other objective is Kullback-
Leibler (KL) Divergence between the Gaussian Distribution
Q(z|µ, σ), where µ and σ are predicted by the encoder, and
the standard Gaussian Distribution N(0, I2).

Place Refiner. The Place Refiner takes the placed body
poses, and the scene contexts encoded by the PointNet [10]
as inputs and predict the offset ∆ti,∆oi for the sampled
t̄i, ōi. To train this network, we first build up the dis-
crete candidates following the same procedure of scene-

conditioned anchor placing in Section 3.2 for each scene
in our training set. For practice, we split each scene into
non-overlapping discrete grids uniformly as translation can-
didates and then uniformly sample eight different orienta-
tions paralleling with the ground plane as the orientation
candidate. Each pose in the given scene is neighbor to four-
position candidates. We assign each pose in the training set
to one randomly sampled neighbor position candidate and
one orientation candidate of this position candidate. Then
we predict the offset from these candidates to the original
translation and orientation for this pose. Similar as [7],
the training objective is the reconstruction loss and the KL-
Divergence.

Neural Mapper. The input of Neural Mapper includes the
local context encoded by BPS [15] and the human mov-
ing direction in this local context, which is obtained from
ground-truth moving paths of PROX [4] dataset. To train
this model, we first split the motions in the training set of
the PROX dataset into different 60 frame sequences. The
local context is cropped as a 2m× 2m× 2m cubic cage at
the motion center as [15]. To compute BPS features, we uni-
formly sample a set ofNb = 104 basis points within the unit
sphere at the center of the local context and then normalize
the local scene context into the same unit sphere. The final
BPS feature is the concatenation of these minimal distances
xs ∈ RNb×1 between the sampled unit sphere and normal-
ized scene context. In practice, we use two additional fully-
connected layers to further encode xs as the local context
feature. Similar to the standard VAE [7], the training ob-
jective of Neural Mapper consists of a KL-Divergence term
and a reconstruction term. Specially, we norm the moving
direction between the beginning and ending points of the
motion sequence to [0, 1] as the reconstruction target during
training. The reconstruction term estimates the residuals be-
tween this normalized moving direction and the expectation
of the estimated direction distribution.

Path Refiner and Motion Synthesizer. We train our Path
Refiner and Motion Synthesizer together in an end-to-end
manner. Both two models synthesize M = 60 frames of
paths or motions. Similarly, the training objective consists
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of the reconstruction loss on the synthesized paths or mo-
tions, as well as the KL-Divergence. Specially, we do not
use the planned path obtained from Section 3.3 in training
the Path Refiner. Instead, we use the directions pointing
from the beginning to the ending point of the motion as the
planned path for practice. The reason mainly lies in two as-
pects. The first one is that repeat running of path planning
module to obtain planned paths is not efficient in training.
The second one is that the shortest path from the planning
module is similar to the straight line in short-term motions.

During the inference stage, we find that directly synthe-
sizing motions from two consecutive anchors lead to unsta-
ble results. We believe it is majorly caused by the variance
of the lengths of the planned paths. To resolve this, we first
split the planned paths into several pieces with equal length.
Each split point is then assigned with an intermediate sta-
tus action label. Using the new action labels, the interme-
diate anchors can be produced following the same method
as placing human-scene interaction anchors in Section 3.2.
Given the new anchors and the split paths, our motion com-
pletion network synthesizes human motions for each piece
and then connects them together as the integrated motion.
For practice, we insert the motions with random poses con-
ditioned on “walking”, “standing”, and “ squatting” action.

1.3. Optimization.

We perform optimizations to improve the motion qual-
ity with the motion and physics constraints. For example,
the human should walk on the floor with smooth motions.
We conduct the optimization in [5] and [13] for human-
scene interaction anchors and motion sequences, respec-
tively. For better human-scene interaction anchors, we use
the objective functions defined in [5], that consist of the af-
fordance loss for contacting the specific body parts to the
given scene (e.g. foot to the floor), penetration loss for the
reasonable physical relationship between body meshes and
the reconstructed SDF (sign distance field), and the regu-
larization to keep the optimized pose close to the initial
pose. We optimize all these human-scene interaction an-
chors for 10 iterations with 1e−3 learning rate, using L-
BFGS [8] algorithm as [5]. For the synthesized motion ob-
tained in Section 3.4, we follow their optimization objective
functions [13] for foot location, environment, and motion
smoothness to improve the motion quality. We optimize all
our motions for 100 iterations with 1e−2 learning rate, us-
ing ADAM [6] algorithm as [13].

2. Experiments

Naturalness Results on PROX. Then we compare the
naturalness of these methods in Table 3. For the physical
plausibility, we use the same motion as the comparison in

Table 1. Evaluation on naturalness of synthesized motions on
PROX [4]. We measured this by physical plausibity (non-collision
and contact score) as well as user study.Specially, w/ and w/o
opt means the results with/without optimization post-process [13].
“Ours*” means our motion completion network without the Path
Refiner.

Method
Non-Collision ↑ Contact ↑ User Study ↑

w/o opt w/ opt w/o opt w/ opt
SA-CSGN [14] 92.37 98.21 95.36 98.72 2.74(0.97)
Wang et.al. [13] 93.88 98.72 96.42 99.35 3.42(1.06)
SAMP [3] 94.92 99.31 96.28 99.32 3.46(0.96)
Ours* 94.52 99.28 96.24 99.27 3.28(0.94)
Ours 95.93 99.61 96.45 99.35 3.68(0.84)

Table 2. Evaluation on human-scene interaction anchors for
Matterport3D [2]. We evaluate the diversity of the human-scene
interaction anchors (Anchor, considering θ, t, and φ) and the plac-
ing (Position, considering only t and φ) with/without optimization
post-process. S means the sampling strategy based on pose rela-
tionship in Section 3.2, and R means our Placing Refiner.

Method Anchor Position
Entropy ↑ Cluster ↑ Entropy ↑ Cluster ↑

Baseline [5] 2.54 / 2.50 2.45 / 2.44 2.51 / 2.50 0.58 / 0.56
Baseline [5] + S 2.63 / 2.61 2.53 / 2.53 2.54 / 2.54 0.64 / 0.65
Baseline [5] + S + R 2.70 / 2.68 2.59 / 2.58 2.68 / 2.66 0.72 / 0.72

Table 3. Evaluation on synthesized motion for Matter-
port3D [2]. Comparison on APD, non-collision score and con-
tact score on Matterport3D dataset. Specially, “w/ OPT” and
“w/o OPT” refer to the results obtained with/without optimization
post-process [13]. “Ours*” means our motion completion network
without the Path Refiner.

Method
APD ↑ Non-Collision ↑ Contact ↑

w/o OPT w/ OPT w/o OPT w/ OPT w/o OPT w/ OPT
SA-CSGN [14] 2.24 2.26 91.51 99.08 95.21 99.33
Wang et.al. [13] 0.00 0.00 93.78 99.42 96.48 99.35
SAMP [3] 2.46 2.48 94.35 99.32 96.46 99.35
Ours* 2.34 2.38 94.12 99.08 96.46 99.32
Ours 2.57 2.60 95.72 99.42 96.72 99.36

Table.3 of our paper. For user study, we randomly sample
motions with 2, 4, and 8 different target actions. All the
comparison results show that our method can synthesize
more natural motions than other methods do. Especially,
our method achieves better results without the optimiza-
tion post-process, because of the guidance from planned
obstacle-free paths. The comparison between the last two
rows shows that the guidance of the proposed Path Refiner
is advantageous in synthesizing natural motions.

Results on Matterport3D. We show the quantitative re-
sults on Matterport3D dataset [2]. The sampling strategies
are the same as our experiments on PROX dataset. We
first perform K-Means (K = 20) and evaluate the obtained
human-scene interaction anchors on Matterport3D with the
entropy of cluster sizes and the average distance between
the cluster center and the samples belong to it.

As shown in Table 2, our method enhance the diversity
of the anchors for motion synthesis. Besides, we evaluate
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Figure 1. Failure cases of the scene-centric paradigm. We use
the action label as additional condition to extend previous scene-
centric paradigms [15, 16]. The first and third column shows re-
sults obtained from [16] and [15], respectively. The second and
forth columns shows the results generated by our framework with
the same pose as the first and third columns, respectively.

the synthesized motion on Matterport3D via the APD, Non-
Collision score and Contact score. The results are listed
in Table 3. It is revealed that our method can synthesize
better results than previous methods with better diversity
and physical plausibility. Besides, the Path Refiner still can
improve the diversity and naturalness on this dataset.

3. Further Discussion
In this section, we first discuss the reason for using the

human-centric paradigm, for human-scene interaction an-
chors. The human-centric paradigm means we place the
sampled poses to the positions which match the physical
structure of these poses. Then we show how to use our Neu-
ral Mapper to work with other manually set constraints. At
last, we show the influence of the planned path on motion
synthesis.

Human-Scene Interaction Anchor. Previous works [15,
16] of synthesizing human-scene interaction anchors aim to
explore the influence of scene context to place human pose
in the given scene and neglect the action labels. Intuitively,
we can incorporate these action labels as an additional con-
dition and incorporate them into their frameworks to syn-
thesize poses. However, as shown in Figure 1, simply ex-
tending the previous works cannot guarantee to synthesize
the physically plausible poses with the given actions and
scene contexts. We believe it is due to the reason that these
methods do not build up the relationship between the action
and the scene context explicitly. For example, method [16]
directly uses the pooled 2D image features as the condition
and ignores the relationship between the spatial information
and the action. Another method [15] first samples different
positions to build up the BPS and then synthesize differ-
ent poses. However, the poses for each action have their
specific physical structure and match different scene struc-
tures. It is difficult to find suitable places for the poses con-
ditioned on the given action label, as shown in the Figure 1.
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Figure 2. Comparison with randomly sampled intermediate
points. Our method can plan diverse and natural paths without
complex manual constraints.

(a) Manual  
Avoiding Regions (b) Path 1 (c) Path 2 (d) Path 3

Figure 3. Neural Map with manual constraints. We change the
valid grids in the blue box as the manual avoiding regions. These
regions are the shortest path from these two points. We find that
our Neural Map can work with this constraint to sample different
planned paths.

Instead, the human-centric paradigm proposed by us can ef-
fectively leverage the explicit relationship between the syn-
thesized 3D human and the scene structure (e.g. physical
and semantic structures) and thus makes the whole placing
process more controllable.

Neural Mapper Several failure cases generated from ran-
domly sampling intermediate points are included in Fig-
ure 2. In the first row, when sampled intermediate points
and the ending points are obstructed, the original A? al-
gorithm can not find paths for these points. We adjust A?

by allowing to search paths in the obstacle regions , and
A? only produces impractical paths crossing the table as
the first row of Figure 2. In the second row, random sam-
pled points can also lead to unnatural zigzag paths. One
may argue that these failures can be avoided via complex
constraints used in previous methods [1, 11]. However, the
proposed Neural Mapper provides an automatic and data-
driven way to embed semantic information into natural and
diverse path planning, without complex constraints. Be-
sides, our Neural Mapper also can work with manually set
constraints, such as avoiding passing a certain region. We
show the planned results in Figure 3. It is revealed that our
method can still produce natural and diverse paths under
such constraints.



Figure 4. Effect of the planned path. (a) is the result without
planning module and (b) is based on planning module. (c) is the
results for only using translations of planned path as the position
encoding for our Path Refiner in Section 3.4 and (d) is result from
our method.

Planned Path for Motion Synthesis. As shown in Fig-
ure 4, we show the effectiveness of using planned paths in
the procedure of motion synthesis. Firstly, without the ad-
ditional positional encoding from the planned path, the syn-
thesized motion can not follow the planned path and pen-
etrate to the table, as shown in Figure 4 (a). Besides, we
find that both the translation and orientation for the planned
path are also crucial for motion synthesis. As shown in Fig-
ure 4 (c), the Path Refiner synthesizes unnatural orientations
for human motions without encoding the orientation of the
planned path into the positional encoding as Section 3.4.
Instead, as shown in Figure 4 (b) and (d), our method can
synthesize natural human motion with the translation and
orientation of planned path as the additional positional en-
coding for our Path Refiner.
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