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This supplementary material provides the following ad-
ditional information: Sec. 1 presents some additional results
and analysis. Several visualization examples are also illus-
trated in this section. Sec. 2 provides some experimental
details, including training settings, ablation settings, dataset
utilization, and implementation of compared methods.

1. Additional Results

1.1. Quantitative Results

Efficiency-accuracy trade-off. In Fig. 1, we show the
computational time and storage requirements of TransVPR
compared with other methods as well as their performances
on MSLS validation set. TransVPR achieves the best trade-
off between accuracy and efficiency in both terms of latency
and memory.

Fine-grained results on RobotCar Seasons v2 dataset.
Tab. 1 shows the fine-grained comparison results on
RobotCar-S2 test set split by specific appearance chang-
ing conditions1. We observe that all methods, especially
the methods (i.e., NetVLAD, SFRS, Patch-NetVLAD, and
TransVPR) trained on MSLS or Pitts30k datasets, do not
work well under night conditions. This is because the dis-
tribution of samples under day and night conditions in train-
ing datasets is severely unbalanced. In future work, it would
be useful to address this challenge by exploring some tech-
niques to improve the model generalization ability based on
limited and unbalanced data.

*Equal contribution.
†Corresponding author.
1We failed to reproduce the results reported in the original paper [6] of

Patch-NetVLAD performance-focused configuration with the official im-
plementation. We are trying to contact the author to solve this problem.
In Tab. 2 of the main paper, we use the result given by the original paper.
Here, we use the fine-grained results reproduced by our-selves since they
are not provided by the author.
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Figure 1. Efficiency-accuracy trade-off. The Recall@1 scores
on MSLS validation set are shown on the y-axis, with (a) the ac-
cumulated time (i.e., feature extraction and feature matching) and
(b) the total memory cost to process one query image shown on
the x-axis.

1.2. Qualitative Results

Effect of re-ranking. Examples of retrieved images be-
fore and after re-ranking by key-patch descriptors are il-
lustrated in Fig. 8. In TransVPR model, the global image
feature is a linear projection of the weighted summation of
multi-level patch descriptors. Although it is robust to the
changes in a scene, it carries no structural information of the
scene and sometimes generates false positive results which
roughly looks similar as the query image. Therefore, geo-
metrical verification by key-patch descriptors is crucial to
achieve high precision.

Visualization of multi-level attentions. Fig. 6 in the
main paper illustrates some visualisation examples of multi-
level attentions captured by TransVPR on MSLS validation
set. Similarly, Fig. 9, Fig. 10, and Fig. 11 shows exam-
ples from Nordland, Pitts30k, and RobotCar-S2 datasets re-
spectively. In Fig. 11 and under night conditions, we note
that the mid-level attention masks also focus on some light
reflection areas. This means that the model misidentifies

1



day conditions night conditions

dawn dusk OC-summer OC-winter rain snow sun night night-rain

m .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0

deg 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10

NetVLAD 11.5 / 30.0 / 78.0 4.6 / 24.4 / 92.4 7.1 / 28.4 / 87.7 1.2 / 22.0 / 97.6 11.7 / 42.9 / 100.0 11.6 / 32.1 / 95.3 4.9 / 15.2 / 72.8 0.4 / 0.9 / 2.7 1.0 / 2.0 / 12.8

SFRS 12.3 / 33.5 / 89.0 6.6 / 32.0 / 98.5 10.0 / 37.0 / 92.9 2.4 / 26.2 / 97.6 12.7 / 43.4 / 99.5 14.0 / 38.6 / 96.3 9.4 / 24.6 / 87.9 0.9 / 3.1 / 31.4 2.0 / 8.4 / 36.9

SP-SuperGlue 15.0 / 45.8 / 97.4 9.1 / 39.1 / 99.0 9.5 / 45.0 / 96.7 3.0 / 31.7 / 100.0 15.1 / 52.7 / 100.0 14.0 / 46.5 / 97.7 12.1 / 33.5 / 94.2 3.1 / 8.8 / 32.7 3.0 / 15.8 / 56.7

DELG 4.0 / 10.6 / 97.8 0.0 / 1.5 / 57.4 1.4 / 3.8 / 72.5 0.0 / 2.4 / 67.8 0.0 / 2.4 / 67.8 1.4 / 3.7 / 89.8 2.2 / 10.3 / 94.6 4.4 / 13.7 / 52.2 5.9 / 24.6 / 70.9

Patch-NetVLAD-s 4.8 / 10.1 / 43.6 2.5 / 8.1 / 39.6 3.8 / 10.9 / 35.5 0.0 / 6.1 / 37.8 5.9 / 21.0 / 43.9 3.7 / 12.1 / 40.0 2.7 / 12.1 / 46.0 0.0 / 0.0 / 9.3 0.0 / 0.0 / 9.9

Patch-NetVLAD-p 5.3 / 12.8 / 44.1 3.0 / 9.6 / 39.1 4.7 / 10.4 / 32.7 0.0 / 6.7 / 37.2 4.9 / 19.0 / 43.9 4.7 / 13.5 / 39.5 3.6 / 12.9 / 46.0 0.4 / 3.1 / 16.8 1.0 / 1.5 / 10.3

TransVPR (ours) 18.5 / 52.0 / 95.6 10.7 / 44.7 / 100.0 12.3 / 45.5 / 99.1 1.2 / 36.6 / 99.4 15.1 / 50.7 / 99.5 14.0 / 42.8 / 99.1 13.4 / 34.4 / 91.1 0.9 / 4.9 / 30.5 0.0 / 1.0 / 10.3

Table 1. Fine-grained performance comparison on RobotCar Seasons v2 dataset.
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Figure 2. Sensitivity of TransVPR to key-patch filtering threshold.

these areas as landmark objects and thus leads to poor per-
formance at night. How can we identify and filter out these
ares is a problem that needs to be solved in future work.

1.3. Further Ablations

Sensitivity to hyper-parameters. We further evaluate
the sensitivity of our model to changes in two main hyper-
parameters: the number of candidates to be re-ranked Nc

and the key-patch filtering threshold τ . The results are
shown in Fig. 2 and Fig. 3.

For all values of Nc, ranging from 20 to 120, TransVPR
maintains state-of-the-art recall performance on MSLS vali-
dation set compared to all other VPR methods, and achieves
competitive performance on other three datasets. This
demonstrates the effectiveness of the TransVPR global rep-
resentation which achieves a high recall rate before re-
ranking. Note that the matching time of re-ranking top-
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Figure 3. Sensitivity of TransVPR to the number of candidates to
be re-ranked.

20 candidates is only 1.02 seconds per query, 3.1 times
faster than that of re-ranking top-100, with only 0.9% and
1.6% recall@1 degradation on MSLS and Pitts30k datasets.
TransVPR provides an efficient solution in real-time VPR
applications.

While changing the key-patch filtering threshold gradu-
ally, the performance of TransVPR reaches a peak at τ =
0.02 (τ = 0.005 for RobotCar-S2 dataset) and remains high
until about τ = 0.08. Larger values of τ result in too few
key-patches reserved for matching. Note that using all local
descriptors without filtering (τ = 0) yields a degradation of
performance, indicating the necessity of our proposed key-
patch detection module.

Ablations on other datasets. In Section 5.4 of the main
paper, we conduct ablations on MSLS validation set and
Nordland test set to study the effect of the choice of patch
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Figure 4. Ablations of local descriptor set selection. On Pitts30k
test set and RobotCar-S test set, descriptors from any Transformer
layer have similar performances and significantly outperform raw
patch descriptors (i.e., layer 0).

Attention
mask

Pitts30k test Robotcar-S2 test
R@1 R@5 R@10 .25m/2° .5m/5° 5.0m/10°

None 86.5 94.4 95.8 9.9 35.0 79.4
aL 87.9 94.2 96.0 9.3 34.2 80.1
aM 87.2 93.8 95.3 9.3 33.2 79.3
aH 84.4 92.6 94.9 8.9 29.9 77.2

aL & aM 88.4 94.4 96.0 9.6 32.7 80.0
A 88.5 94.5 96.0 10.1 35.0 79.6

Table 2. Performance of TransVPR on Pitts30k test set and
RobotCar-S2 test set when using several combinations of atten-
tion masks from different Transformer levels to select key-patch
descriptors. For RobotCar-S2 dataset, we set the key-patch filter-
ing threshold τ to 0.005 which is the most optimized value.

descriptor sets and attention masks used for key-patch de-
tection. Here, we show results of same experiments on
Pitts30k test set and RobotCar-S2 test set in Fig. 4 and
Tab. 2 respectively. We have the same observations as in the
main paper: Patch descriptors with global context signif-
icantly outperform raw patch descriptors which have only
local perception fields. Among all attention mask combina-
tions, the fused multi-level attention mask A achieves the
best performance.

2. Experimental Details
2.1. Training Details

TransVPR is optimized by AdamW optimizer [18] with
0.03 weight decay using cosine learning rate decay sched-
ule.

The backbone network (the four-layer CNN and the six-
layer Transformer) is pretrained on Places365 dataset [19]
for 100 epochs with an initial learning rate of 0.0001. Im-
ages are scaled to 224×224 for faster training. The attention
layers (W a

i ) and the dimensionality reduction layer (Wg)
are initialized by training for 5 epochs on MSLS training
set with 0.0003 initial learning rate, 384× 384 input image
size, and the margin m of 0.1. The pre-training time for
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Figure 5. Single level & single attention map (sL-sATT).
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Figure 6. Multi-level & single attention map (mL-sATT).

TransVPR is about 4.5 days on 4 NVIDIA GeForce RTX
2080 Ti GPUs.

When fine-tuning on VPR datasets, we use initial learn-
ing rate 0.00001 and train for 15 epochs. Input image size
is set to 384 × 384 for MSLS training set and 480 × 640
for pitts30k training set. It takes approximately 2.5 days on
4 GPUs to pre-train on MSLS dataset and 0.5 days on 2 on
Pitts30k dataset.

2.2. Attention Aggregation Strategy

In section 5.4 of the main paper, we implement three
degenerate models based on different attention aggregation
strategies (i.e., sL-sATT, mL-sATT, and mL-mATT-plain).
Their architectures are illustrated in Fig. 5, Fig. 6, and Fig. 7
respectively.

2.3. Dataset Description and Utilization

Mapillary Street Level Sequences (MSLS) [17].
MSLS is a large-scale place recognition dataset which con-
tains more than 1.6 million urban and suburban images from
30 cities across six continents. It covers various types of
environmental changes, including weather, season, day and
night, viewpoint, dynamic objects, and structural modifica-
tions. GPS coordinates and compass angles are provided
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Figure 7. Multi-level & multiple attention maps & plain connec-
tion (mL-mATT-plain).

for each image. Reference images which locate within 25m
and 40◦ from the query are considered as ground truths. The
dataset is divided into a training set, a public validation set,
and a withheld test set (MSLS challenge). When training,
we define a mixed distance dij to represent the field of view
overlap between two images i and j:

dij = ||xi − xj ||2/40 + (θi − θj)/25, (1)

where x is GPS coordinate vector and θ is angle value.
Positive samples are selected from image pairs with dij < 1
to ensure that there are overlapping regions between them.

Pittsburgh [16]. Pittsburgh dataset contains 250k street-
level images derived from Google Street View panoramas.
It has significant viewpoint variations and dynamic objects.
Only GPS labels are available in Pittsburgh, and ground
truths are defined as reference images within 25m from the
query. Its subset Pitts30k, proposed by [1], containing 6k
queries images and 10k database images in each of the train-
ing, validation and test sets is used in our experiments.

Nordland [15] [12]. Nordland dataset contains four
aligned image sequences recorded during a 728 km long
train journey in four seasons. It has seasonal changes but
very few viewpoint changes. We used the dataset parti-
tion2 presented by [12], which has a test set containing 3450
images per sequence. Ground truth tolerance is set to ±2
frames away from the query. Following [2, 6, 7, 9], winter
sequence is used as query set, while summer sequence is
used as reference set.

RobotCar Seasons v2 [10, 14] RobotCar Seasons v2 is
a subset of RobotCar dataset which captures 20k images
in Oxford by cameras mounted on a car. It typically in-
cludes various weather and seasonal conditions during day
and night with minor viewpoint changes. It is divided into
a public training set and a withheld test set. Following the
setting in [6], results in the main paper are computed by
summarizing the results of different conditions weighted by
the number of query images of each condition.

2https://webdiis.unizar.es/ jmfacil/pr-nordland/

2.4. Implementation Details of Baselines

NetVLAD [1]. A learnable VLAD layer is proposed in
this method to aggregate local descriptors from CNN fea-
ture maps with learnable cluster centers. We use the pytorch
implementation3 and its released model trained on Pitts30k
training set with VGG-16 backbone.

SFRS [5]. This work is based on NetVLAD and im-
proves its performance by training under self-enhanced and
fine-grained supervision. We use the official implementa-
tion4 and the released model state trained on Pitts30k train-
ing set.

SP-SuperGlue [4, 13]. This patch-level feature match-
ing approach is used to re-rank candidates retrieved by
NetVLAD. We use the official implementation5 and the re-
leased outdoor model trained on MegaDepth dataset [8].

DELG [3]. This is a unified CNN model which extracts
both global and patch-level image features. We use the of-
ficial implementation6 and the released model trained on
Google Landmarks Dataset v2 dataset [11] with ResNet-50
backbone.

Patch-NetVLAD [6]. This method extracts patch-level
features based on NetVLAD residuals and uses them to re-
rank NetVLAD retrieved candidates. We use the official
implementation7. Both speed-focused and performance-
focused configurations are evaluated. Following the orig-
inal paper, the released model trained on Pitts30k training
set is evaluated on Pitts30k test set, while the one trained on
MSLS training set is evaluated on all other datasets.

3https://github.com/Nanne/pytorch-NetVlad
4https://github.com/yxgeee/OpenIBL
5https://github.com/magicleap/SuperGluePretrainedNetwork
6https://github.com/tensorflow/models/tree/master/research/delf
7https://github.com/QVPR/Patch-NetVLAD

https://webdiis.unizar.es/~jmfacil/pr-nordland/
https://github.com/Nanne/pytorch-NetVlad
https://github.com/yxgeee/OpenIBL
https://github.com/magicleap/SuperGluePretrainedNetwork
https://github.com/tensorflow/models/tree/master/research/delf
https://github.com/QVPR/Patch-NetVLAD


Query Global retrieval result Re-ranking result & matching

Figure 8. Examples of global retrieval and re-ranking results by TransVPR on MSLS val (top), Nordland (middle) and Pitts30k (bottom)
datasets. In these cases, re-ranking results are all correct, and global retrieval results framed in green are correct while those in red are
incorrect.
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Figure 9. Attention visualization examples on Nordland dataset.
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Figure 10. Attention visualization examples on Pitts30k dataset.
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