Appendix

In this Appendix, we provide further ablations for video
(§A) and image (§B) classification. §C contains the imple-
mentation details, and §D provides more qualitative results.

A. Ablations on Video Classification

model pre-train top-1 | top-5 | FLOPs x views | Param
SlowFast 16x8 +NL [14] - 81.8|95.1| 234x3x10| 60
X3D-XL [13] - 819|955 48x3x10 11
MoViNet-A6 [22] - 84.8 | 96.5 386x1x1 31
MViT-B-24, 32x3 [12] - 84.1|96.5 236x1x5| 53
Swin-B, 16x2 [26] Sup., IN-21K 84.0 | 96.5 282x3x4| 88

Swin-L1384, 32x2 [26]
ViViT-H [1]
Florence1384 [37]

Sup., IN-21K 86.1197.3|2107x5x10| 200
Sup., JFT-300M | 85.8 | 96.5 | 3981x3x4| 654
Text, FLD-900M | 87.8 | 97.8 | N/Ax3x4| 647

MViTv2-L, 16 x4 [24] Sup., IN-21K 858 197.1| 377x1x10| 218
MViTv2-L, 16 x4 [24] MaskFeat, K600 | 86.4 | 97.4 | 377x1x10| 218

MViTv2-L1312, 40x3 [24] | Sup., IN-21K 87.5197.8| 2828x3x4| 218
MViTv2-L1312, 403 [24] [MaskFeat, K600 | 88.3 | 98.0 | 2828x3x4| 218

(a) Kinetics-600

model pre-train top-1|top-5 | FLOPs x views | Param

SlowFast 16x8 +NL [14] - 71.0 | 89.6 | 234x3x10 60
MoViNet-A6 [22] - 72.3 | N/A 386x1x1 31

MViTv2-L, 16 x4 [24] Sup., IN-21K 7671934 377x1x10| 218
MViTv2-L, 16 x4 [24] MaskFeat, K700| 77.5 | 93.8 | 377x1x10| 218

MViTv2-L1312, 40x3 [24] | Sup., IN-21K 7941949 | 2828x3x4| 218
MViTv2-L1312, 40x3 [24] | MaskFeat, K700 | 80.4 | 95.7 | 2828x3x4| 218
(b) Kinetics-700

Table 9. Comparison with previous work on K600 & K700. We
report the inference cost with a single “view” (temporal clip with
spatial crop) X the number of views (FLOPS X vieWpace X ViEW(ime ).
Each “view” consists of T frames with 7 temporal stride, 7' X 7.
Magnitudes are Giga (10%) for FLOPs and Mega (10°) for Param.
Accuracy of models trained with external data is de-emphasized.

Kinetics-600 and Kinetics-700. Table 9 compares with
prior work on K600 [3] and K700 [4]. Both are larger
versions of Kinetics. An MViTv2-L, 16x4 is pre-trained
with MaskFeat for 300 epochs and fine-tune for 75 epochs
on both datasets. The models achieve the top accuracy of
86.4% on K600 and 77.5% on K700, using no external im-
age data amd over 10xfewer FLOPs compared to previous
Transformer-based methods.

Finally, we fine-tune these MViTv2-L, 16 x4 models at
a larger input spatial resolution of 312 and a longer duration
of 40%3 to achieve 88.3% top-1 on K600 and 80.4% top-1
on K700, setting a new state-of-the-art with a large margin
over the previous best on each dataset, without any external
supervised pre-training (e.g. on IN-21K or JFT-300M).

ratio | 20% 40% 60% 80%
top-1 | 81.9(-0.3) 82.2 82.2 82.0 (-0.2)
Table 10. Masking ratio. Varying the percentage of masked

patches. MaskFeat is robust to masking ratio in video domain.

Masking ratio. We study the effect of the masking ratio in
Table 10. Interestingly, a wide range of masking ratios from

40% to the extreme 80% can produce similar fine-tuning
accuracy, and only a small ratio of 20% leads to a slight drop
of -0.3%. This is different from the observation on images,
where ratios larger than 40% lead to degraded accuracy (see
discussions in Appendix B). This indicates that in the video
domain visual patterns are indeed more redundant than in
images, and thus MaskFeat enjoys a larger masking ratio to
create a properly difficult task.

type center patch cube
top-1 82.2 82.0(-0.2)
Table 11. Target design. Predicting center patch HOG or all HOG
in a cube gives similar results. Default in gray .

Target design. On video, each output token corresponds to
a space-time cube. Our default setting is to simply predict
the feature of the 2-D spatial patch temporally centered in
each masked space-time cube. In Table 11 we consider an-
other straightforward way of predicting the entire cube, i.e.,
HOG features of each 2-D patch in the 3-D cube. Results
are similar and we use center patch prediction for simplicity.

epoch param. (M) ‘ 300 800
MViTv2-S, 16 x4 36 822 82.0 (-0.2)
MViTv2-L, 16 x4 218 83.1 84.3 (+1.2)

Table 12. Pre-training schedule. Large model benefits more from
longer pre-training schedule.

Pre-training schedule. We show different pre-training
schedule lengths on K400 in Table 12. Each result is fine-
tuned from a fully trained model instead of an intermediate
checkpoint. For MViTv2-S with 36M parameters, extend-
ing pre-training from 300 epochs to 800 epochs results in a
small performance degradation of 0.2% accuracy. In con-
trast, for MViTv2-L longer pre-training provides a signifi-
cant gain of +1.2% accuracy. This suggests that MaskFeat
is a scalable pre-training task that can be better utilized by
models with larger capacity and longer schedule.

B. Ablations on Image Classification

epoch | 300 800 1600
ViT-B 83.6 83.9 (+0.3) 84.0 (+0.4)
ViT-L 84.4 85.4 (+1.0) 85.7 (+1.3)

Table 13. Pre-training schedule. Gains with longer schedules are
observed. The large model benefits more from longer schedules.

Pre-training schedule. We show different lengths of pre-
training in Table 13. Each result is fine-tuned from a fully
trained model instead of an intermediate checkpoint.

For both base and large size models, improvements are
observed with longer pre-training schedules. Interestingly,
the large size model benefits more from longer pre-training
with +1% gain from 300 epochs to 800 epochs, while the
base-size model is only improved by +0.3%. This suggests



that MaskFeat is a sufficiently difficult task such that (i) ex-
cessive long pre-training does not cause over-fitting of large
models, and (ii) MaskFeat is sufficiently difficult for high
capacity models. Training for 1600 epochs only gives an-
other +0.1% improvement for ViT-B.

ratio ‘ 20% 40% 60% 80%
top-1 | 83.5(-0.1) 83.6 83.1(-0.5  82.5(-1.1)

Table 14. Masking ratio (image). Varying the percentage of
masked patches. A smaller percentage of masking is preferred.

Masking ratio. We vary the percentage of masked patches
in Table 14 with block-wise masking following BEiT [2].
We observe that masking out 20%~40% patches works well
and that stronger masking degrades accuracy. MaskFeat re-
quires enough visible patches to set up a meaningful ob-
jective. Note that 20%~40% masking is more than 15%
masking used in masked language modeling (BERT [10]),
reflecting redundancy in raw visual signals.

aug. RRC RRC + color jit. RRC + Rand Aug.
top-1 83.6 83.6 83.2(-0.4)
(a) Augmentation. Our MaskFeat works best with only Random Re-
sized Crop (RRC) as augmentation.
scale | [0.08,1.0] [0.2,1.0] [0.5,1.0] [0.8,1.0]
top-1 | 83.4(-0.2) 83.4(-0.2) 83.6 83.4(-0.2)

(b) Random resized crop scale. A relatively large scale of random crops
provides a small gain.

Table 15. Data augmentation in MaskFeat. Defaults are gray .

Data augmentation. We study the effect of data augmen-
tation during MaskFeat pre-training in Table 15. All three
entries in Table 15a use random horizontal flipping. Our
approach works best with only random resized crop (RRC),
while color jittering has no influence on the result and
stronger augmentation (RandAugment [9]) degrades the
performance slightly by 0.4%. This suggests that strong
augmentations might lead to artificial patterns that in turn
lead to a gap in pre-training and finetuning and MaskFeat
works nearly augmentation-free. Conversely, contrastive-
based methods are arguably dependent on “augmentation
engineering” to provide prior knowledge (e.g., [6, 18]),
which could lead to conflicting clues [29] and over-fitting
to a specific combination of augmentations [36].

We further study the effect of the RRC [min, max]
scales in Table 15b. Our approach is robust to this hyper-
parameter. MaskFeat works best with low strength of RRC,
[0.5, 1.0], which covers a large fraction of each sample.

targets ‘ pixel HOG pixel + HOG
top-1 | 825(L1) 83.6 82.3 (-1.3)
Table 16. Multi-tasking. Simply combining two targets with two
separate linear prediction heads results in a drop, suggesting con-
flict in the objectives. The default entry is marked as gray .

Multi-tasking. Finally, we investigate if combining differ-
ent targets in a multi-task loss helps. Specifically, we com-
bine pixel and HOG, two single-stage target features, by
predicting each target with a separate linear layer. The two
prediction losses are simply averaged with equal weight-
ing. The results are summarized in Table 16. We see that
multi-tasking of pixel and HOG provides a small gain over
the scratch baseline (82.3% vs. 81.8%), but the accuracy
is lower than pixel or HOG only. Though further tuning
the loss weighting might improve this result, it signals that
the two objectives can not benefit each other. This is rea-
sonable, as HOG targets are locally normalized while pixel
colors are strongly influenced by local brightness changes.

block | 8" 16" 24"

op-1 | 677 66.0 55.9
Table 17. Linear probing. We perform linear probing after the
8", 16™, 24™ (last) block of MaskFeat pre-trained ViT-L. Lower
layers obtain better linear accuracy.

Linear probing. Besides the fine-tuning protocol, we con-
sider linear probing in Table 17 which is commonly used
to evaluate contrastive methods [5,20]. We train randomly
initialized linear classifiers right at transformer block out-
puts. Specifically, we consider the average pooled outputs
of the 8™, 16™ and 24 (last) transformer blocks of a ViT-L
pre-trained with 1600 epochs of MaskFeat on IN-1K. We
observe that lower layers (e.g., the 8") tend to have higher
linear accuracy. This is different from contrastive based
methods whose higher layers tend to obtain better linear ac-
curacy [34,35]. All layers lag behind contrastive methods
by a large margin. For instance, MoCo v3 [7] has 77.6% at
the last block of ViT-L. This suggests that contrastive-based
and masked visual prediction methods have very different
features. MaskFeat learns good visual knowledge revealed
by fine-tuning protocol but not linearly separable features.
Our hypothesis here is that instance discrimination losses
in contrastive learning create different embeddings (classes)
for different images which can be largely reduced to class-
level information (a subset of classes) with a linear layer.

C. Implementation Details
C.1. ImageNet and Kinetics Experiments

Architecture. For ImageNet experiments, we use the stan-
dard ViT architecture [11] in base and large sizes. We use a
single linear layer to transform the output of the last block
to form the target predictions. We do not use relative posi-
tional bias or layer scaling.

For Kinetics experiments, we use MViTv2 [24], the im-
proved version of MViT [12]. There are two main mod-
ifications. First, instead of using absolute positional em-
beddings as in MViT, relative positional embeddings [31]
are incorporated, which are decomposed in height, width,



config ImageNet Kinetics
optimizer AdamW [28]
optimizer momentum 51, $2=0.9,0.999
weight decay 0.05
learning rate schedule cosine decay [27]
warmup epochs [16] 30
augmentation hflip, RandomResizedCrop
gradient clipping 0.02
drop path [23] X
base learning rate’ 2e-4 8e-4
batch size 2048 512

(a) Pre-training setting.
config ImageNet Kinetics

ViT-B  ViT-L MViTv2-S MViTv2-L

optimizer AdamW [28]
optimizer momentum 51, $2=0.9,0.999
weight decay 0.05
learning rate schedule cosine decay [27]
warmup epochs [16] 5
augmentation RandAug (9, 0.5) [9]
mixup [39] 0.8
cutmix [38] 1.0
label smoothing [33] 0.1
drop out [32] X
base learning rate’ 2e-3 le-3 4.8e-3 9.6e-3
layer-wise decay [8] 0.65 0.75 0.75 0.875
batch size 2048 1024 512 256
training epochs 100 50 200 75
drop path [23] 0.1 0.1 0.1 0.2

(b) Fine-tuning setting.

Table 18. Configurations for ImageNet and Kinetics. TWe use
the linear /r scaling rule [16]: Ir = base_lr x batch_size | 256.

and temporal axes. Second, a new residual pooling connec-
tion is introduced inside the attention blocks. Specifically,
the pooled query tensor is added to the output sequence
of self-attention. These two modifications improve the
training-from-scratch and supervised-pre-trained baselines.
We do not use channel dimension expansion within atten-
tion blocks [24] but at MLP outputs [12] which has similar
accuracy. Our approach which focuses on pre-training tech-
niques is orthogonal to these architectural modifications and
provides further gains over the improved baselines.

Unlike ViT models sharing the spatial size of 14 for all
blocks, the MViTv2 architecture is multi-scale and has four
scale stages. Stage I output is of spatial size 562 and stage
4 output is of spatial size 72. To share hyper-parameters
with ViT models which are of spatial size 142, we remove
MViTv2s’ query pooling before the last MViTv2 stage for
MaskFeat pre-training only, resulting in a 142 final output
size, the same as ViT models. This modification introduces
little extra computation as stage 4 is small and has only two
Transformer blocks. For the fine-tuning stage, the MViTv2
models are unchanged, with 72 output to fairly compare

with the MViTv2 baselines. Relative positional embeddings
are linearly interpolated when the shape is not matched.

When sampling masked tokens for MViTv2 models on
the pre-training stage, we first sample a map of the final
output size, 142. This masking map is then nearest-neighbor
resized to the stage I size or input size, 562. In this way the
set of input tokens corresponding to the same output token
are masked out together, avoiding trivial predictions.

Pre-training. Table 18a summarizes the pre-training con-
figurations. Most of the configurations are shared by Im-
ageNet and Kinetics, without specific tuning. This shows
that MaskFeat is general across tasks. The gradient clipping
value is set after monitoring training loss over short runs. It
is 0.02 for HOG targets and 0.3 for pixel color prediction
and deep feature targets.

Fine-tuning. Table 18b summarizes the fine-tuning config-
urations. Most of the configurations are shared across mod-
els, except that deeper models use larger layer-wise learning
rate decay and larger drop path rates.

For extra-large, long-term video models with 312 and
352 spatial resolutions as well as 32x3 and 40x3 tempo-
ral durations, we initialize from their 224 resolution, 16 x4
duration counterparts, disable mixup, and fine-tune for 30
epochs with a learning rate of 1.6e-5 at batch size 128, a
weight decay of le-8, a drop path [23] rate of 0.75 and a
drop out rate of 0.5 for the final linear projection. Other
parameters are shared with Table 18b.

C.2. AVA Experiments

The AVA action detection dataset [19] assesses the spa-
tiotemporal localization of human actions in videos. It has
211K training and 57K validation video segments. We eval-
uate methods on AVA v2.2 and use mean Average Precision
(mAP) on 60 classes as is standard in prior work [14].

We use MViTv2-L1312,40x3 as the backbone and
follow the same detection architecture in [12, 14, 24]
that adapts Faster R-CNN [30] for video action detec-
tion. Specifically, we extract region-of-interest (Rol) fea-
tures [15] by frame-wise RolAlign [21] on the spatiotem-
poral feature maps from the last MViTv2 layer. The Rol
features are then max-pooled and fed to a per-class sigmoid
classifier for action prediction. The training recipe is iden-
tical to [12,24] and summarized next. The region proposals
are identical to the ones used in [12, 14,24]. We use pro-
posals that have overlaps with ground-truth boxes by IoU >
0.9 for training. The models are trained with synchronized
SGD training with a batch size of 64. The base learning rate
is 0.6 per 64 batch size with cosine decay [27]. We train for
30 epochs with linear warm-up [16] for the first five epochs
and use a weight decay of le-8, a drop path of 0.4 and a
head dropout of 0.5.



C.3. SSv2 Experiments

The SSv2 dataset [17] contains 169K training, and
25K validation videos with 174 human-object interaction
classes. We fine-tune the pre-trained MViTv2-L1312, 40%3
Kinetics models and take the same recipe as in [12, 24].
Specifically, we train for 40 epochs with a batch size of 128.
The base learning rate is 0.02 per 128 batch size with cosine
decay [27]. We adopt synchronized SGD and use weight
decay of le-4 and drop path rate of 0.75. The training aug-
mentation is the same as Kinetics in Table 18b, except we
disable random flipping in training. We use the segment-
based input frame sampling [12,25] (split each video into
segments, and sample one frame from each segment to form
a clip). During inference, we take a single temporal clip and
three spatial crops over a single video.

D. Qualitative Experiments

We provide more qualitative results of image HOG pre-
dictions in Fig. 4 using ImageNet-1K validation images and
for video HOG predictions in Fig. 5 using Kinetics-400 val-
idation videos.
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Figure 4. More visualizations of HOG predictions. The images are from IN-1K validation set. For each column, we show masked input
(left), HOG predictions (middle) and original images (right). Original images are not used for prediction. Best viewed in color with zoom.
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Figure 5. More visualizations of HOG predictions (video). The video clips are from K400 validation set. For each column, we show
masked input (left), HOG predictions (middle) and original video frames (right), and we show eight frames from top to bottom. Original

video clips are not used for prediction. Best viewed in color with zoom.
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