
Supplementary Material for
Deblurring via Stochastic Refinement

1. Additional Perception-Distortion Plots
The Perception-Distortion plot provided in Section 1 of the main text shows the trade-off between PSNR and Kernel

Inception Distance (KID). We observe that other combinations of perceptual (NIQE, LPIPS, FID) and distortion metrics
(PSNR, SSIM) follow a similar trend, as shown in Figure 1. We note that formally LPIPS is also a distortion metric, as it is a
full-reference based distance computed in a deep feature space. We nonetheless observed that LPIPS corresponds to human
perception much better than PSNR or SSIM.
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Figure 1. Additional Perception-Distortion plots with respect to different metrics. Left column contains perceptual metrics vs. PSNR, and
the right column contains SSIM comparisons. We notice that the same trade-off is present for all (perceptual, distortion) metric pairs.
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2. Diversity Analysis
Figure 2 shows the relation between the blurriness (or sharpness) on the input image, and the diversity of the generated

deblurred samples. The blurrier the input image is, the more diversity we get in the samples (see figure caption for more
details).
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Figure 2. Sample diversity as a function of input image sharpness. The ill-posedness of the restoration task (i.e. how strong the blur is)
has a direct impact on the diversity of the generated samples. Left: Each point in this plot represents an image in the GoPro validation set.
Image sharpness is computed as: sharpness = ‖∆input‖/‖∆reference‖, where ∆ is the Laplacian of the given image. Sample diversity is
computed as: diversity = ‖Var [sample] ‖/‖∆reference‖, where Var[sample] is the per pixel empirical variance of multiple restored images
for a given input. Right: Four different blurry image crops with different level of sharpness, and a respective deblurred sample for each one
(sample 1).

3. Synthetic DIV2K Deblurring Dataset
To better analyze various aspects of our diffusion deblurring model, we created a custom dataset by applying synthetic

camera shake blur (following [5] and noise to the DIV2K dataset [1]. This allows us to make qualitative evaluations in a
more controlled environment, since the low-quality ground truth images in existing paired datasets [10, 11] make qualitative
assessment difficult and lessens the benefits from using a powerful generative model.

The synthetically generated random kernels are of varying size (31× 31 maximal support). Figure 3 shows example kernels.
The kernels can be of any size from a perfect Delta (sharp) to about 30 pixels. In addition to the blur, a white Gaussian noise
with random standard deviation σ ∼ U [0, 15] is added.

4. Omitted Details for DPM Formulation
Equation (2): Marginal at time step t. We proceed by induction. For t = 1, we have ᾱ1 = α1, so Eq. (2) reduces to the
diffusion transition kernel:

q(x1 | x0) = N (x1;
√
α1x0, (1− α1)Id) .

Now suppose we have q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)Id) for some t > 1, which we reparameterize as

xt =
√
ᾱtx0 +

√
1− ᾱtε, where ε ∼ N (0, Id).

Then by applying a single diffusion step q(xt+1 | xt) to the above, we get

xt+1
(1)
=
√
αt+1xt +

√
1− αt+1ε

′

(2)
=
√
αt+1

√
ᾱtx0 +

√
αt+1

√
1− ᾱtε+

√
1− αt+1ε

′

(3)
=
√
ᾱt+1x0 +

√
αt+1 − ᾱt+1ε+

√
1− αt+1ε

′

(4)
=
√
ᾱt+1x0 +

√
1− ᾱt+1ε

′′,
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Figure 3. Examples of synthetically generated random kernels (following [5]) used to generate the deblurring dataset.

where the first step uses a reparameterization ε′ ∼ N (0, Id), the second step is from the inductive hypothesis, and the last step
follows from summing two independent Gaussian random variables. Thus

xt+1 ∼ N (
√
ᾱt+1x0, (1− ᾱt+1)Id) ,

which concludes the inductive step.

Reverse diffusion step expressions. Applying Bayes’ Rule to Eq. (3) leads to the following expressions for the mean and
variance for the reverse diffusion step:

µt(xt,x0) =

√
ᾱt−1(1− αt)

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt,

βt =
1− ᾱt−1

1− ᾱt
(1− αt).

We refer the reader to Ho et al. [6] for a more thorough treatment of the DPM formulation.

Specifying the noise schedule. Following [3, 13], given a fixed budget of T steps, we sample the continuous noise level
√
ᾱ

from a piecewise uniform distribution. Specifically, we define T intervals (li−1, li), where l0 , 1 and li ,
√
ᾱi for i > 0.

Then to sample a continuous noise level ᾱ, we first randomly pick an interval (lk−1, lk), and sample ᾱ ∼ U [lk−1, lk].
Now all that remains is to specify the schedule α1, . . . , αT . While there are many options (e.g. as explored by Chen et

al. [3]), we used a simple linear schedule on the variance of the forward process by fixing the two endpoints and linearly
interpolating the intermediate values.

5. Model Details
Network architecture. We use a U-Net [12] architecture similar to the one used by SR3 [13]. A crucial difference is that our
network was made fully-convolutional by removing self-attention, group normalization, and positional encoding. At the input,
the noisy sample xt is concatenated with the conditioning input y channel-wise.

As shown in Fig. 4, our U-Net has four resolution depths with channel multipliers {1, 2, 3, 4}. Both the denoiser network
and initial predictor use this architecture. Their main difference is size, where the starting channel count is 64 for the initial
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predictor and 32 for the denoiser. This results in the initial predictor having ∼26M parameters, and the denoiser having ∼7M
parameters. Note that the input and output would change slightly when this architecture is used for the initial predictor, which
tries to estimate x from y (no xt and ᾱ in the input, and the output is not ε).

Training details. We train all of our models for 1M steps using 32 TPUv3 cores. For our main model with the initial
predictor and the denoiser network, it takes about 27 hours to train the model. We used the AdamW [9] optimizer with a fixed
learning rate of 0.0001, weight decay rate of 0.0001, and EMA decay rate of 0.9999. During training, we used fine-grained
diffusion process with T = 2000 steps. As described above, we used a linear noise schedule with the two endpoints set as:
1− α0 = 1× 10−6 and 1− αT = 0.01.
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Figure 4. Diagram describing the U-Net architecture used for both the denoiser network and the initial predictor in our experiments. Note
that the input and output depicted here are for the denoiser network.

6. Evaluation Details
For all our experiments (on all datasets: GoPro, HIDE, DIV2K), we performed a grid search over the following hyperpa-

rameter combinations during inference:

1. Inference steps (T ): 10, 20, 30, 50, 100, 200, 300, 500.

2. Noise schedule (α1:T ): We fixed the initial forward process variance (1 − α0) to 1 × 10−6. For the final variance
(1− αT ), we sweep over {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. The intermediate values are linearly interpolated.

How baseline samples are obtained. As mentioned in Sec. 5 of the main text, we computed various perceptual metrics
ourselves as the existing literature often only reports PSNR and SSIM. To ensure fairness in our comparisons, we tried to
use author-produced restoration results whenever possible. Otherwise, we used the official implementations and pre-trained
models released by the authors of each paper and produced restorations ourselves.
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Specifically, for HINet [2], MPRNet [16], and SAPHNet [15], we used restorations produced by the authors for both GoPro
and HIDE results. For MIMO-UNet+ [4] and DeblurGANv2 [7], we used the authors’ implementation and model checkpoints
from their respective Github repositories. For SimpleNet [8], we could not obtain either the restorations nor the code, so we
only reported the metrics from the paper (PSNR, SSIM, LPIPS).

7. Large GoPro and HIDE Results
In Figures 5–7, we include larger versions of the GoPro and HIDE restorations shown in the main text. Figures 5 and 6 are

from GoPro [10], and Figure 7 is from HIDE dataset [14].

8. Additional Results
GoPro dataset. In Figures 8–12 we present additional results on the GoPro dataset [10] where we compare our diffusion
deblurring method to SAPHNet [15], DeblurGAN-v2 [7], MIMO-Unet+ [4], MPRNet [16], and HINet [2]. Consistent with the
main text, “Ours-SA” refers to the sample averaging variant of our method.
DIV2K Deblurring dataset. In Figures 13–16 we present additional results on the synthetically generated DIV2K deblurring
dataset. For comparison purposes, we train a regression-based model (to minimize L2 loss, thus maximizing PSNR) that
has the same architecture as the one we used for the initial predictor. Compared to the over-smoothed restorations from the
regression-based baseline trained to minimize distortion, our method produces more realistic textural details.



Figure 5. Full comparison of the GoPro [10] deblurring result presented in the main text. The compared methods are: SAPHNet [15],
DeblurGAN-v2 [7], MIMO-Unet+ [4], MPRNet [16], and HINet [2]. We include restorations from our method with and without sampling
averaging (“Ours” and “Ours-SA”).
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Figure 6. Full comparison of the GoPro [10] deblurring result presented in the main text. The compared methods are: SAPHNet [15],
DeblurGAN-v2 [7], MIMO-Unet+ [4], MPRNet [16], and HINet [2]. We include restorations from our method with and without sampling
averaging (“Ours” and “Ours-SA”).



Figure 7. Full comparison of the HIDE [14] deblurring result presented in the main text. The compared methods are: SAPHNet [15],
DeblurGAN-v2 [7], MIMO-Unet+ [4], MPRNet [16], and HINet [2]. We include restorations from our method with and without sampling
averaging (“Ours” and “Ours-SA”).
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Figure 8. Additional deblurring results on the GoPro [10] dataset. The compared methods are: SAPHNet [15], DeblurGAN-v2 [7],
MIMO-Unet+ [4], MPRNet [16], HINet [2], and our method with and without sampling averaging.



Figure 9. Additional deblurring results on the GoPro [10] dataset. The compared methods are: SAPHNet [15], DeblurGAN-v2 [7],
MIMO-Unet+ [4], MPRNet [16], HINet [2], and our method with and without sampling averaging.



Figure 10. Additional deblurring results on the GoPro [10] dataset. The compared methods are: SAPHNet [15], DeblurGAN-v2 [7],
MIMO-Unet+ [4], MPRNet [16], HINet [2], and our method with and without sampling averaging.



Figure 11. Additional deblurring results on the GoPro [10] dataset. The compared methods are: SAPHNet [15], DeblurGAN-v2 [7],
MIMO-Unet+ [4], MPRNet [16], HINet [2], and our method with and without sampling averaging.



Figure 12. Additional deblurring results on the GoPro [10] dataset. The compared methods are: SAPHNet [15], DeblurGAN-v2 [7],
MIMO-Unet+ [4], MPRNet [16], HINet [2], and our method with and without sampling averaging.
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Figure 13. Additional deblurring results on the custom DIV2K dataset. We see that the initial predictor’s blurry output is enhanced by the
denoiser with realistic details.



Figure 14. Additional deblurring results on the custom DIV2K dataset. We see that the initial predictor’s blurry output is enhanced by the
denoiser with realistic details.
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Figure 15. Additional deblurring results on the custom DIV2K dataset. We see that the initial predictor’s blurry output is enhanced by the
denoiser with realistic details.
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Figure 16. Additional deblurring results on the custom DIV2K dataset. We see that the initial predictor’s blurry output is enhanced by the
denoiser with realistic details.
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