
Supplementary Material: De-rendering 3D Objects in the Wild

Felix Wimbauer1,2 Shangzhe Wu2 Christian Rupprecht2
1 Technical University Munich, 2 University of Oxford
wimbauer@in.tum.de {szwu, chrisr}@robots.ox.ac.uk

1. Additional Results

We show some additional qualitaive results. Figure 1
shows a large number of additional decomposition results.
Figure 2 shows a large number of additional visual compar-
isons with other state-of-the-art methods. Tab. 1 analyses
the effects of bias in the training data, which might get in-
troduced as a result of our coarse shape, light, and material
estimation.

2. Limitations

While our proposed method achieves good results on a
wide variety of data, it also comes with some limitations.

First, when there is no coarse light supervision, the train-
ing can become unstable and might, after a long training,
suddenly diverge to a state where it ignores specular ef-
fects. This usually shows in α taking maximum value and
the aspec taking minimum value.

Secondly, even though our image formation model is al-
ready fairly complex, it can sometimes still not capture all
possible lighting effects that can appear in in-the-wild im-
ages. In extreme cases, the model tends to bake those shad-
ing effects into either the albedo or the shading map, as
shown for example in Fig. 3. Additionally, hard shadows
can sometimes have an influence on the normal map, even
though the shape underneath is of course unaffected by the
shadow of another object falling onto it (see second row of
Fig. 3). We expect that an explicit modeling of shadows
could alleviate this problem.

Normal N Albedo A Specular Ispec

Add. bias MSE ↓ DIA ↓ SIE ↓ SSIM ↑ MSE ↓ L1 ↓

None 0.173 37.8 0.075 0.760 0.112 0.059

Normal +15◦ 0.184 39.4 0.077 0.759 0.124 0.077
Brightn. −0.1 0.171 37.7 0.075 0.766 0.115 0.059
Brightn. +0.1 0.183 39.1 0.077 0.716 0.122 0.065

Table 1. Effects of bias in training data Artificial bias intro-
duced for normal angles and the brightness of the coarse albedo
estimates.

3. Broader Impact & Ethics
The goal of our method is to learn a model that lifts im-

ages of objects from 2D into a disentangled 3D representa-
tion. We expect this method to be useful for the increasing
amount of XR and VFX application in consumer devices.
Additionally, learning to de-render images is in itself a chal-
lenging computer vision task as the model needs to discover
robust and general visual representations.

Alongside the paper, we are releasing a synthetic dataset
of 3D objects for future benchmarking under an open, non-
commerical license. We expect this to contribute to the field
as it establishes a test set with ground truth annotations that
was previously not available to researchers.

As the main focus of this work concerns general ob-
jects, potential negative societal implications are low. How-
ever, we include an evaluation on CelebA-HQ [1], which
is a dataset of images of faces of celebrities. The copy-
right situation is unclear as the dataset was scraped from
the internet and naturally contains person identifying infor-
mation (faces). The dataset contains biases in many forms
(celebrities are not representative of the general population,
most images are professional photographs, general focus
on celebrities from western countries etc.). Models trained
on this data can reflect these biases and thus should only
be used for research purposes. We include these results to
show a comparison to methods that are specialized for hu-
man faces while our method can be trained on an object-
centric dataset.

As described in the previous section, our method still
has some limitations and thus should not be used in critical
applications.

4. Technical Details

3D Geometry. The coordinate system used for representing
the normal maps has its x-axis pointing left, y-axis pointing
upwards, and z-axis pointing towards the viewer. We visu-
alize normal maps by first scaling and translating the value
range from [−1,−1] to [0, 1] and then directly converting
the xyz coordinates to rgb colors.

The lighting direction is modeled by a vector pointing

1



C
el

eb
A

-H
Q

C
o3

D
C

O
Sy

R
ea

l P
ho

to

Figure 1. Additional qualitative results. Corresponding to Fig. 4 in the main paper.

from the model to the light source. Note, that the lighting is
modeled to be relative to the camera position Therefore, the
viewing direction, relevant for specular effects, is always
constant at v = (0, 0, 1)T .

To obtain the normal map ND from the depth map D,
which is used in Eq. 1, we compute the 3D tangent plane
of a point using the 4-neighborhood of this point in image
space. The normal of the tangent plant is then used as the

2



SIRFS

Single Image
Shape And
SVBRDF

Neural
Relighting

Shapenet
Intrinsics

Ours

Input Albedo /
Reflectance Normal (Diffuse)

Shading 
Specularity / 
Roughness 

N/A

N/A

N/A

N/A SIRFS

Single Image
Shape And
SVBRDF

Neural
Relighting

Shapenet
Intrinsics

Ours

Input Albedo /
Reflectance Normal (Diffuse)

Shading 
Specularity / 
Roughness 

N/A

N/A

N/A

N/A

SIRFS

Single Image
Shape And
SVBRDF

Neural
Relighting

Shapenet
Intrinsics

Ours

Input Albedo /
Reflectance Normal (Diffuse)

Shading 
Specularity / 
Roughness 

N/A

N/A

N/A

N/A

SIRFS

Single Image
Shape And
SVBRDF

Neural
Relighting

Shapenet
Intrinsics

Ours

Input Albedo /
Reflectance Normal (Diffuse)

Shading 
Specularity / 
Roughness 

N/A

N/A

N/A

N/A

Figure 2. Additional qualitative comparison with state of the art. Corresponding to Fig. 6 in the main paper.

normal at this point.

The coarse normal mapNc is the a key component in the
optimization to obtain the coarse albedo and light estimate.
It is usually either given at a lower resolution than the input
image, or it is sparse. In the case of lower resolution, we
downsample the input image to match the resolution of the

coarse normal map. When computing the coarse losses, we
upsample the coarse normal and albedo map again.

In the case that Nc is sparse, we fill it in using nearest
neighbor interpolation before computing the initial albedo
estimate Ãc. However, during albedo and light optimiza-
tion, as well as during the computation of the coarse losses,

3



Albedo Normal Diffuse Specular

Figure 3. Limitations. Extreme lighting effects with out-of-
distribution examples. Strong specular reflections can sometimes
bleed into the albedo map. Strong shadows can have an effect on
the normal map.

we only consider valid pixels.

Light Prediction and Sampling. When predicting the
light direction, we fix the z = 1 (facing from the cam-
era side to the object) and only predict the x, y ∈ [−1, 1]
components. Afterwards, we normalize the vector. The
reasoning behind this is that there only exist meaningful
lighting effects, when the light is not coming from behind
the object. Further, we apply a custom scaling function
f(x) = (x+1

2 (αmax − 1) + 1)2 to obtain α. We also limit
the range of aspec to [aspec,min, aspec,max]

The adversarial loss requires images that are relit under
random lighting conditions. To also cover unusual light
directions l′ = (x′, y′, z′), we again fix z′ = 1, sample
x′, y′ ∼ N (0, σl) and then normalize l′. As strength of
ambient and directional lighting only really influences the
overall brightness of the image, which is a very easy cue to
pick up on for the discriminator, they have to remain within
the distribution of the training data. Therefore, we compute
the mean µamb of samb over the training batch and then
sample s′amb ∼ N (µamb, 0.1) (same for s′dir).

Implementation. All models and data processing steps (ex-
cept for the Point Cloud Library) are implemented in Py-
Torch [2]. The Image-to-image networks (shape, albedo,
specular refinement) are implemented as auto-encoders
with skip-connections, inspired by the U-Net [3]. The light
network follows a classical encoder architecture. All of
them use the tanh activation function and the respective out-
puts gets scaled to the corresponding value range (e.g. to
[0, 1] for colors). Sec. 4 and Sec. 4 give an overview over
the different network configurations.

Training. For all training runs, we use a batch size of 12 on
a GPU with 24GB VRAM. We train the CelebA-HQ model
for 30 epochs (approx. 60k iterations) and the Co3D model
for 10 epochs (approx. 20k iterations). We only use spec-
ular refinement for the CelebA-HQ model and train it in a
second training stage for 5 more epochs. Here, we freeze all
other network weights and only use the adversarial loss with
a weight of λgan = 0.1. Tab. 2 shows the exact hyperparam-

Model Configuration

Param. CelebA-HQ CO3D

D [0.9, 1.1] [0.9, 1.1]
aspec [0.0, 0.5] [0.1, 0.5]
αmax 64 64

Training Configuration

Param. Value Param. Value

n 12 λA 1
η 1e−4 λL 1(CelebA-HQ) / 0(Co3D)

λD 0.5 λrec 0.5
λN 1 λgan 0.01

Optimization Configuration

CelebA-HQ CO3D

Param. Value Param. Value

i 100 i 100
ηlight 0.01 ηlight 0.01
ηalbedo 0.04 ηalbedo 0.01
λTV 5 λTV 20

Table 2. Model Configuration and Hyperparameters. n denotes
batch size. η denotes the learning rate. i denotes the number of
iterations for optimization.

Table 3. Encoder Architecture. Architecture of the shape fS and
pose network fP . The network follows a convolutional encoder
structure. n is the number of parameters predicted by each net-
work.

Encoder Output size

Conv(3, 64, 4, 2) + ReLU() 128 × 128
Conv(64, 128, 4, 2) + ReLU() 64 × 64
Conv(128, 256, 4, 2) + ReLU() 32 × 32
Conv(256, 512, 4, 2) + ReLU() 16 × 16
Conv(512, 512, 4, 2) + ReLU() 8 × 8
Conv(512, 512, 4, 2) + ReLU() 4 × 4
Conv(512, 512, 4, 2) + ReLU() 2 × 2
Conv(512, 512, 4, 1) + ReLU 1 × 1
Conv(512, cout, 1, 1)→ output 1 × 1

eters used for training. On Co3D, we use the objects masks
obtained from SfM to mask the prediction during training
and inference.

COSy Dataset. The COSy dataset is built from ten publicly
available 3D scenes for the Blender 3D modeling software1.
The 3D models can be downloaded from the following
links and are available under variants of the Creative Com-
mons license. Hot Dog2, Accordion3, Wall-Phone4, Hy-

1https://www.blender.org/
2https://blendswap.com/blend/23962
3https://blendswap.com/blend/17099
4https://blendswap.com/blend/19579

4

https://www.blender.org/
https://blendswap.com/blend/23962
https://blendswap.com/blend/17099
https://blendswap.com/blend/19579


Table 4. Auto-Encoder Architecture. Architecture of Φshape, Φalbedo, and Φspec ref . The network follows a U-Net structure [3]. All
convolution operators zero-pad the input such that the output has the same resolution.

Encoder Output size

Conv(3, 64, 3, 1) + LReLU(0.1) + Conv(64, 64, 3, 1) + LReLU(0.1) + MaxPool(2) 128 × 128
Conv(64, 128, 3, 1) + LReLU(0.1) + Conv(128, 128, 3, 1) + LReLU(0.1) + MaxPool(2) 64 × 64
Conv(128, 256, 3, 1) + LReLU(0.1) + Conv(256, 256, 3, 1) + LReLU(0.1) + MaxPool(2) 32 × 32
Conv(256, 512, 3, 1) + LReLU(0.1) + Conv(512, 512, 3, 1) + LReLU(0.1) + MaxPool(2) 16 × 16
Conv(512, 1024, 3, 1) + LReLU(0.1) + Conv(1024, 1024, 3, 1) + LReLU(0.1) + MaxPool(2) 8 × 8
Conv(1024, 1024, 3, 1) + LReLU(0.1) + Conv(1024, 1024, 3, 1) + LReLU(0.1) + MaxPool(2) 4 × 4
Conv(1024, 1024, 3, 1) + LReLU(0.1) + Conv(1024, 1024, 3, 1) + LReLU(0.1) + MaxPool(2) 2 × 2
Conv(1024, 1024, 3, 1) + LReLU(0.1) + Conv(1024, 1024, 3, 1) + LReLU(0.1) 2 × 2

Decoder Output size

Conv(1024, 1024, 3, 1) + LReLU(0.1) + Conv(1024, 1024, 3, 1) + LReLU(0.1) + Upsample(2) 4 × 4
Conv(1024, 1024, 3, 1) + LReLU(0.1) + Conv(1024, 1024, 3, 1) + LReLU(0.1) + Upsample(2) 8 × 8
Conv(1024, 1024, 3, 1) + LReLU(0.1) + Conv(1024, 1024, 3, 1) + LReLU(0.1) + Upsample(2) 16 × 16
Conv(1024, 512, 3, 1) + LReLU(0.1) + Conv(512, 512, 3, 1) + LReLU(0.1) + Upsample(2) 32 × 32
Conv(512, 256, 3, 1) + LReLU(0.1) + Conv(256, 256, 3, 1) + LReLU(0.1) + Upsample(2) 64 × 64
Conv(256, 128, 3, 1) + LReLU(0.1) + Conv(128, 128, 3, 1) + LReLU(0.1) + Upsample(2) 128 × 128
Conv(128, 64, 3, 1) + LReLU(0.1) + Conv(64, 64, 3, 1) + LReLU(0.1) + Upsample(2) 256 × 256
Conv(64, cout, 3, 1) + LReLU(0.1) + Conv(cout, cout, 3, 1) 256 × 256

drant5, Wingback Chair6, Camera7, Toaster8, Scooter9, Mi-
crophone10, Parkingmeter11. We adapt the models to fit our
requirements, for example, define camera views and modify
the material so that we can extract the diffuse albedo.

References
[1] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.

Progressive growing of gans for improved quality, stability,
and variation. In ICLR, 2018. 1

[2] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS, 2019. 4

[3] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI, pages 234–241. Springer, 2015. 4, 5

5https://blendswap.com/blend/8443
6https://blendswap.com/blend/12555
7https://blendswap.com/blend/15833
8https://blendswap.com/blend/6231
9https://blendswap.com/blend/5256

10https://blendswap.com/blend/4145
11https://blendswap.com/blend/7714

5

https://blendswap.com/blend/8443
https://blendswap.com/blend/12555
https://blendswap.com/blend/15833
https://blendswap.com/blend/6231
https://blendswap.com/blend/5256
https://blendswap.com/blend/4145
https://blendswap.com/blend/7714

	. Additional Results
	. Limitations
	. Broader Impact & Ethics
	. Technical Details

