
Appendix Interspace
Pruning: Using Adaptive
Filter Representations to
Improve Training of Sparse
CNNs
A. Structure of the Appendix

The Appendix is divided into the following Sections:
A Describes the structural organization of the Appendix.
B Contains ablation studies for IP methods which are not

shown in the main body of the text.
C Discussion about storing unstructured sparse networks.
D Gives detailed information about the computations of

FB-CNNs including backpropagation formulas. Espe-
cially, a comparison between the number of FLOPs
required to evaluate and train a convolutional layer in
the spatial and interspace representation is drawn. Fi-
nally, details on the real time measurements of sparse
speed ups are given.

E Computes transformation rules between the spatial and
interspace coefficients, their gradients and Hessian ma-
trices.

F Here, the computations of the pruning scores used for
experiments in the main body of the text are proposed.

G Shows three different Algorithms to initialize FB-
CNNs, including the standard initialization scheme
used in the main body of the text. Further, details of
implementations of the pruning methods are proposed.

H Describes used training setups, hyperparameters,
datasets and evaluation procedure for experiments in
the main body of the text.

I Presents network architectures, used in the experimen-
tal evaluation.

J Concludes the Appendix with a mathematical proof of
Theorem 1.

B. Additional ablations
B.1. Using different initializations for the inter-

space.

For SP-SNIP, the problem of vanishing gradients occurs,
see Fig. A3(a). Filters which are spatially too sparse induce a
vanishing gradient for high pruning rates. As shown in Fig. 1,
IP leads to less zeros in the spatial representation of filters
than SP after training. But, a pruned CNN has a spatially
sparse topology before training if a standard initialization is
used. This seems not to be the optimal initial situation for
training FBs jointly with their coefficients. To analyze dif-

0.85 0.9 0.95 0.99 0.995
Pruning rate

20

40

60

80

To
p-

1
Te

st
 A

cc
ur

ac
y

IP-SNIP / VGG16 / CIFAR10

0.85 0.9 0.95 0.99

90.5

91.0

92.5

93.0

93.5
Zoomed

IP-SNIP Standard Basis
IP-SNIP Random ONB

IP-SNIP Random Basis

(a)

0.85 0.9 0.95 0.99 0.995
Pruning rate

0

20

40

60

80

To
p-

1
Te

st
 A

cc
ur

ac
y

IP-SNIP / VGG16 / CIFAR-10

0.85 0.9 0.95 0.99

91

92

93

Zoomed

WD: FB [×] / Coeffs []
WD: FB [] / Coeffs []

WD: FB [] / Coeffs [×]
WD: FB [×] / Coeffs [×]

(b)

Figure A1. Both: IP-SNIP for a VGG16 trained on CIFAR-10. (a)
Standard, random ONB and random initialization are compared.
(b) Weight decay applied [X] / not applied [✗] on FBs and FB
coefficients.

ferent starting conditions for IP, we initialized the interspace
with standard, random ONB and random initializations. For
details on these different initialization schemes, see Sec. G.

Experimental results can be seen in Fig. A1(a) for a
VGG16 trained on CIFAR-10. For lower pruning rates, start-
ing with B and a random ONB behaves similar. For high
pruning rates, random ONBs are even better suited to be
used. With them, the forward and backward dynamics of a
pruned network are not impaired by spatially sparse filters
at the beginning of training. Using non-orthonormal FBs
leads to worse results than ONBs for lower pruning rates.
Elements of a random basis are likely to be more similar
to each other than those of ONBs. This redundancy wors-
ens performance for lower pruning rates, but significantly
improves results for higher sparsity.

B.2. Top-5 accuracy for PaI on ImageNet

Figures A2(a), (b) and (c) show the top-5 test accuracies
for the PaI ImageNet experiment with a ResNet18. Using IP
instead of SP again improves results significantly as already
shown and discussed for top-1 test accuracies in Figs. 3b,
3d and 3f and Sec. 5.2, respectively. Similar to the top-1
accuracy, random PaI reaches better top-5 results than SNIP,
GraSP and SynFlow.

B.3. Impact of weight decay.

Weight decay (WD) [A.15] reduces the network’s capac-
ity by shrinking parameters smoothly during training. Due
to the bias-variance trade-off [A.9], WD can help to increase
the network’s generalization ability. To find the best way
to combine WD and IP, we tested all combinations of WD
turned on/off for FBs and their coefficients. For this purpose,
we used IP-SNIP on VGG16 and CIFAR-10, see Fig. A1(b).
For lower p, not using WD at all yields the worst perfor-
mance whereas the best results are obtained by applying WD
on both, FBs and FB coefficients. For higher p, applying
WD on the FBs reduces the network’s capacity too much.
On average, using WD on the FB coefficients but not on the
FBs themselves leads to the best results.

i

ResNet18 on ImageNet

0.6 0.75 0.85
Pruning rate

83

84

85

86

87

88

To
p-

5
Te

st
 A

cc
ur

ac
y

(a) SNIP

0.6 0.75 0.85
Pruning rate

83

84

85

86

87

88

To
p-

5
Te

st
 A

cc
ur

ac
y

(b) GraSP

0.6 0.75 0.85
Pruning rate

83

84

85

86

87

88

To
p-

5
Te

st
 A

cc
ur

ac
y

(c) SynFlow
SP-PaI IP-PaI SP-Random-PaI IP-Random-PaI

Figure A2. Comparison between top-5 test accuracies for SP on
SNIP (a), GraSP (b) and SynFlow (c), and their adapted IP methods
for a ResNet18 on ImageNet.

0 20000 40000 60000 80000
Training Iteration

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

M
ea

n/
St

d
Gr

ad
ie

nt
 L

1 N
or

mSNIP / VGG16 / CIFAR-10 / p=0.995

SP-SNIP
IP-SNIP

(a)

0 20000 40000 60000 80000
Training Iteration

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
ea

n
Co

sin
e

Si
m

ila
rit

y

SNIP / VGG16 / CIFAR10
p=0.85
p=0.9
p=0.95
p=0.99

(b)

Figure A3. (a) Mean and std of gradient L1 norm for IP- and SP-
SNIP for p = 0.995. (b) The mean cosine similarity of all elements
of the coarse FB for a VGG16 pruned with IP-SNIP and trained
on CIFAR-10 is tracked over training for varying pruning rates.

B.4. Similarity of filter bases

In Fig. A3(b), the development of the cos similarity for
the coarse FB F is tracked at training time for different
pruning rates for IP-SNIP with a VGG16 trained on CIFAR-
10. For F , random initialization is used. The cos similarity

Co
nv

1
Co

nv
2

Co
nv

3
Co

nv
4

Co
nv

5
Co

nv
6

Co
nv

7
Co

nv
8

Co
nv

9
Co

nv
10

Co
nv

11
Co

nv
12

Co
nv

13 FC
1

FC
2

FC
3

0.2

0.4

0.6

0.8

1.0

La
ye

r's
 P

ru
ni

ng
 R

at
e

Layerwise Pruning Rates for p = 0.995
 VGG16 / CIFAR-10

Conv8
Conv9

Conv10
Conv11

Conv12
Conv13

0.998

0.999

1.000
Zoomed

SNIP GraSP SynFlow

(a)

Co
nv

1
Co

nv
2

Co
nv

3
Co

nv
4

Co
nv

5
Co

nv
6

Co
nv

7
Re

sid
1

Co
nv

8
Co

nv
9

Co
nv

10
Co

nv
11

Re
sid

2
Co

nv
12

Co
nv

13
Co

nv
14

Co
nv

15
Re

sid
3

Co
nv

16
Co

nv
17 FC

1

0.0

0.2

0.4

0.6

0.8

1.0

Layerwise Pruning Rates for p = 0.85
 ResNet18 / ImageNet

SNIP
GraSP

SynFlow

(b)

Figure A4. Layerwise pruning rates for PaI methods on (a) VGG16
on CIFAR-10 and (b) ResNet18 on ImageNet.

of F is the sum of all absolute values of cos similarities of
distinct elements in F , i.e.

2

K2 · (K2 − 1)

K2∑
j=1

K2∑
k=j+1

|⟨g(j), g(k)⟩|
∥g(j)∥2 · ∥g(k)∥2

. (A.1)

It therefore measures how similar two elements in F are on
average. Figure A3(b) shows that the bases have approxi-
mately the same similarity at the beginning of training for
all pruning rates. For lower pruning rates, the final similarity
is much smaller than for higher ones. Therefore, we assume
that increasing the FB to more than 9 filters for lower prun-
ing rates might reduce the number of needed FB coefficients,
as there is “enough space” left between the 9 basis filters.
On the other hand, for high pruning rates we should be able
to reduce the elements in the FB, since the basis elements
tend to assimilate, i.e. “do not need the whole space”. Ex-
perimental justifications of these assumptions are shown in
Sec. B.6.

B.5. Layer wise pruning rates for PaI

As shown in Fig. A4(a), SNIP has the problem of pruning
big layers too much. For the VGG16, convolutional layers
9 and 10 are pruned almost completely. This will lead to
a vanishing gradient, see for example Fig. A3(a). With IP,
the gradient flow can be increased, but if a layer is pruned
completely, even an adaptive basis can not repair the damage.

SynFlow tends to fully prune 1×1 convolutional residual
connections in ResNets. As shown in Fig. A4(b), all three
residual connections are pruned completely. Consequently,
IP- and SP-SynFlow show worse results than IP-/SP-SNIP
and GraSP for ResNets, see for example Fig. 3f. Both,
SNIP and GraSP prune residual connections even less than
surrounding layers.

B.6. Generalizing filter bases

Up to now, we discussed experiments where FBs F
formed bases. But, the spanning system F ⊂ RK×K does
not need to form a basis. The interspace can also be spanned
by an overcomplete F , i.e. #F > K2 or an undercomplete
F with #F < K2. This leads to the more generalized

ii

92.50

93.00

93.50 =
0.52

=
0.50

4 5 6 7 8 9 10 11 12 13 14

88.00

89.00

=
1.20

p=0.85 p=0.95 p=0.995

IP-SNIP / VGG16 / CIFAR-10

Filters in each Filter Dictionary F

To
p-

1
Te

st
 A

cc
ur

ac
y

(a)

0.85 0.9 0.95 0.99 0.995
Pruning/Freezing rate

20

40

60

80

To
p-

1
Te

st
 A

cc
ur

ac
y

FreezeNet / VGG16 / CIFAR10

0.85 0.9 0.95
90.5

91.0

91.5

92.0

92.5

93.0

93.5
Zoomed

SP-SNIP
IP-SNIP

Standard FreezeNet
IP-FreezeNet

Dense Baseline

(b)

Figure A5. (a): Different sizes of FDs for varying pruning rates p.
(b): IP and SP versions of freezing parameters compared to pruning
them. Frozen/pruned parameters are selected before training by the
SNIP criterion.

formulation of filter dictionaries (FDs) which include all
sizes of #F . Of course, a FB defines a FD with #F = K2

elements which are additionally assumed to be linearly inde-
pendent.

As discussed in Sec. D, undercomplete FDs can be used
to reduce the number of computations needed for a 2D FB
convolution. However, overcomplete FDs might lead to
representations of filters needing less coefficients, see [A.28,
A.5, A.3]. It is not clear which elements of a basis B should
be removed to obtain an undercomplete FD, or added for
overcomplete ones. Thus, we initialized all elements of the
FDs randomly in this experiment.

A VGG16 contains 3 × 3 filters, thus a FB has 9 fil-
ters. Figure A5(a) shows IP-SNIP for a VGG16 trained
on CIFAR-10. Reported results are those with the best val-
idation accuracy from coarse, medium and fine FD
sharing. Here, p measures the pruning rate for IP with a
FB, i.e. F = 9. For #F ̸= 9, the number of non-zero FD
coefficients is equal to #F = 9. Thus, the representation of
a filter in the interspace spanned by its dictionary is more
sparse if #F > 9 and less sparse if #F < 9 compared to
#F = 9.

More than 9 elements in a FD improve results if coef-
ficients are not too sparse, e.g. #F = 10 for p = 0.85 or
#F = 13 for p = 0.95. Using more sophisticated methods
to determine initial FDs might help to exploit overcomplete
FDs better. Since #F > 9 increases the sparsity of FD
coefficients, the performance for high pruning rates drops
drastically for overcomplete FDs compared to bases.

If undercomplete FDs are used, performance worsens for
lower pruning rates. Here, the capacity of the network is too
low as the interspace is only #F dimensional. Due to only
few non-zero FB coefficients, this is not a limiting factor
for high pruning rates anymore. The reduced dimensionality
of the interspace even increases performance compared to
#F ≥ 9. A reason for this might be the increased infor-
mation flow induced by a denser structure of the interspace.
The best result for p = 0.995, with test accuracy 88.9%, is
achieved with #F = 5. In comparison, SP-SNIP has 10.0%

Pruning rate Size in kB sparse size
dense size · 100% Sparse & mask

Dense training 53, 256 — —

0.2 60, 765 114.1 82.3
0.35 49, 345 92.7 67.9
0.6 30, 446 57.2 43.0
0.85 11, 461 21.5 16.9
0.995 410 0.8 0.6

Table A1. Compression for the PaI method IP-SNIP after train-
ing a VGG16 on CIFAR-10. All stored network parameters are
in full precision, i.e. 32bit floating points. Sparse networks are
stored in the CSR format whereas the dense one is stored raw.
Moreover, dense and sparse networks are compressed by using
numpy.savez compressed. Sparse and mask denotes the per-
centage of the theoretically needed memory if only sparse parame-
ters are stored together with the entropy encoded pruning mask.

test accuracy for the same number of non-zero parameters.

B.7. Freezing coefficients

FreezeNet [A.30] is closely related to pruning before
training via SNIP [A.16]. FreezeNet trains the same param-
eters as SNIP but freezes the un-trained coefficients during
training instead of pruning them. By using pseudo random
initializations for the network, the frozen coefficients do not
have to be stored after training but can be recovered with the
used random seed. By always guaranteeing a strong gradient
signal, FreezeNet outperforms SNIP significantly for low
numbers of trained parameters as shown in Fig. A5(b). The
opposite is true if more parameters are trained.

We further compare freezing of spatial coefficients, stan-
dard FreezeNet, and freezing interspace coefficients, IP-
FreezeNet. Using adaptive FBs instead of freezing the spatial
coefficients again significantly improves performance. Thus,
improvements induced by interspace representations are not
limited to pruning but also hold for other dimensionality
reductions like freezing parts of a CNN during training.

C. Storing unstructured sparse networks
Storing sparse parameters in formats such as the com-

pressed sparse row format (CSR) [A.27] creates additional
overhead. The CSR format stores all non-zero elements of
a matrix together with an array that contains the column in-
dices and an additional array with the number of elements in
each row. Therefore, additional parameters have to be stored
for each non-zero element to determine the corresponding
column- and row index. However, the two additional arrays
do not need to be stored in 32bit full precision, but only as
integers. The CSR format can be used for efficiently com-
puting sparse matrix vector products which we also used for
determining the sparse speed up for IP and SP, see Sec. D.4.

We empirically tested the overhead for real memory costs

iii

of sparse networks stored in the CSR format, see Tab. A1.
Note, IP or SP pruned networks have, up to some insignif-
icant differences, equal memory costs in practice and the-
ory. Therefore, we report IP pruned networks in Tab. A1.
Training 0.5% of all parameters compressed the network
to 0.8% of the dense network’s size for IP-SNIP with a
VGG16 [A.24] trained on CIFAR-10. Of course, for such
a small number of non-zero elements, the overhead of the
CSR format is also quite small. For pruning 85% of the
parameters, 21.8% of the dense memory is needed. As can
be seen, additional index memory for sparse row formats
increases with a decreasing pruning rate. Thus, for p ≤ 0.5
CSR will not lead to good compression results and finally
even lead to a higher memory requirement than storing the
network in a dense format. As shown in Fig. A6(a), using the
CSR format for such low pruning rates does not significantly
speed up the network inference.

Therefore, other formats for storing the sparse network
can be used for lower pruning rates. By storing the prun-
ing mask via entropy encoding, e.g. [A.31], at most 1bit is
needed for each mask parameter. To be exact, storing the
network’s pruning mask for a pruning rate p ∈ (0, 1) ideally
needs

1 ≥ S = −p · log2 p− (1− p) · log2(1− p) bits (A.2)

for each element in the mask. If the mask is known, only
the non-zero parameters have to be stored in the right order
and in full precision. Thus, storing the sparse network of
total size d with pruning rate p needs, in the ideal case,
d ·(S+(1−p) ·32) bits, compared to d ·32 bits for the dense
network. In total, using entropy encoding for the pruning
mask compresses the sparse network to S/32+ (1− p) of its
original size. As shown in Tab. A1, storing the pruning mask
together with the non-zero coefficients is cheaper than CSR
for all pruning rates.

D. Comparing computational costs for convolu-
tions with spatial and interspace represen-
tations

For simplicity we will do the analysis with a FB F con-
sisting of K2 elements in the following. But it is straight
forward to do similar computations with an arbitrary FD F
of size N .A.1 As a results, all computational costs for the
interspace setting are multiplied by a factor N/K2 to get the
costs for the arbitrary FD case.A.2 This shows that computa-
tions for IP are more expensive if an overcomplete FD with
#F > K2 is used. On the other hand, by reducing the size
of a FD, the computations can be sped up.

A.1Summing from 1 to N instead of K2 or doing needed computations
N times instead of K2 times.

A.2Except the costs for computing ∂L
∂h

needed to update F which are
equal for all sizes of F .

In this Section, we determine the number of FLOPs
needed to evaluate a standard 2D convolutional layer and
a FB 2D convolutional layer. We use FLOPs as a measure
since they are easy to determine and replicable in a math-
ematical framework but can also be measured in real time
applications. A FLOP corresponds to either a multiplication
or a summation.

For the forward pass, we show that the number of re-
quired FLOPs is increased by a small, constant amount
for FB-CNNs compared to standard CNNs for all pruning
rates. Since the FB formulation can easily be converted to a
standard representation, dense FB-CNNs therefore could be
transformed into standard CNNs after training. If a CNN is
pruned, this transformation is not advisable since it usually
destroys the sparsity of the network.

In the backward pass, similar results hold. Moreover, we
need to compute the gradient of the FB which of course
requires additional resources in the IP setting.

In the following, we will assume the convolutions to have
quadratic K ×K kernels as well as no zero padding, stride
1× 1 and dilation 1× 1.

D.1. Computations in the forward pass

Standard convolution.

Let h = (h(α,β))α,β ∈ Rcout×cin×K×K denote a convolu-
tional layer of a CNN. Furthermore, let X = (X(β))β ∈
Rcin×h×w be the input feature map of the corresponding
layer. In the following, we determine the number of FLOPs
needed to evaluate this layer. In order to do so, we first
analyze the costs for one cross-correlation ⋆, used in practice
to compute 2D convolutional layer [A.1, A.21], i.e.

h(α,β) ⋆ X(β) =
(
(h(α,β) ⋆ X(β))i,j

)
i,j

(A.3)

=

(
K∑

m,n=1

h(α,β)
m,n ·X(β)

m+i,n+j

)
i,j

∈ Rd1×d2 ,

(A.4)

with d1 := h+1−K and d2 := w+1−K, the dimensions
of the output. Equation (A.4) shows that the cost for one
cross-correlation is given by 2 · K2 · d1 · d2 FLOPs. The
output of a 2D convolutional layer is given by

Y =
(
Y (α)

)
α
=

 cin∑
β=1

h(α,β) ⋆ X(β)

α

∈ Rcout×d1×d2 ,

(A.5)
which finally leads to cout · cin times the costs to compute a
single cross-correlation Eq. (A.4). Therefore, 2 · cout · cin ·
K2 ·d1 ·d2 FLOPs are needed in total to compute a standard
2D convolutional layer.

iv

FB convolution

Let h = (h(α,β))α,β = (
∑

n λ
(α,β)
n · g(n))α,β ∈

Rcout×cin×K×K be the interspace representation of h, where
the FB is given by F = {g(1), . . . , g(K2)} ⊂ RK×K . The
2D convolution of this layer with input X ∈ Rcin×h×w can
be computed via

Y =
(
Y (α)

)
α
=

 cin∑
β=1

K2∑
n=1

λ(α,β)
n ·

(
g(n) ⋆ X(β)

)
α

.

(A.6)
Using the last equation in Eq. (A.6), we see that g(n) ⋆ X(β)

has to be computed once for each combination of β and
n, i.e. cin · K2 many times. The costs for computing all
g(n) ⋆X(β) is therefore given by 2 · cin ·K4 · d1 · d2 FLOPs.
For each combination of α, β and n, g(n) ⋆ X(β) has to
be multiplied by the scalar λ(α,β)

n . These are d1 · d2 many
FLOPs for each α, β and n. Summing over β and n yields
another cout · cin ·K2 ·d1 ·d2 FLOPs in total. Thus, the total
costs for computing a FB 2D convolutional layer is given by
2 · cout · cin ·K2 · d1 · d2 + 2 · cin ·K4 · d1 · d2 FLOPs.

By using FB convolutions, the numbers of needed FLOPs
is therefore slightly increased by 2·cin ·K4 ·d1 ·d2. Which is
a relative increase of K2

/cout ·100% compared to the standard
case.

Pruned networks

In the following we assume the convolutional layer h ∈
Rcout×cin×K×K to be pruned with a pruning rate of p ∈
[0, 1].A.3 We suppose all zero coefficients to be known. Thus,
the corresponding multiplications do not have to be com-
puted in Eqs. (A.4) and (A.6).

The required number of computations for a standard 2D
convolutional layer with pruning rate p is therefore given by

2 · cout · cin ·K2 · d1 · d2 · (1− p) FLOPs . (A.7)

For a pruned FB 2D convolutional layer,

2 ·cout ·cin ·K2 ·d1 ·d2 ·(1−p)+2 ·cin ·K4 ·d1 ·d2 FLOPs
(A.8)

are needed for evaluation.
The number of FLOPs for IP is increased for all pruning

rates by 2 ·cin ·K4 ·d1 ·d2 compared to SP. These are exactly
the costs for computing all combinations of g(n) ⋆ X(β),
needed for the forward pass for FB 2D Convolutions. These
costs are independent of the pruning rate and therefore a
constant overhead of IP compared to SP. Thus the additional
costs for IP in the forward pass compared to SP are K2

/cout

times the costs of the dense forward pass.
A.3For simplicity, we assume the number of non-zero coefficients for IP

and SP to be equal here. Due to extra FB parameters, the number of non-
zero interspace coefficients is always slightly smaller than for the standard
case in our experiments.

D.2. Backward Pass

Up to now, we have computed additional FLOP costs for
IP compared to SP in the forward pass. Now we want to
have a closer look at the backward pass. We note that ∂L

∂Y
always has the same cost for the standard- and the FB 2D
convolution layer. This holds since X̂ = σ(Y) for some
activation function σ and consequently ∂L

∂Y = ∂L
∂X̂
⊙ σ′(Y).

Computing the gradient for X .

Furthermore, it is known that

∂L
∂X(β)

=

cout∑
α=1

h(α,β)⋆̂
∂L
Y (α)

(A.9)

with a strided convolution ⋆̂ that corresponds to the forward
pass and which needs 2 · cout · cin ·K2 · h · w FLOPs. By
representing h(α,β) =

∑K2

n=1 λ
(α,β)
n · g(n) and using the

linearity of ⋆̂, we now get the computational overhead of
2 · cout ·K4 ·h ·w FLOPs which are the costs for computing

g(n)⋆̂
∂L
Y (α)

(A.10)

for all n ∈ {1, . . . ,K2} and α ∈ {1, . . . , cout}. This re-
sults in an overhead of K2

/cin compared to the costs of the
standard, dense network.

In the sparse case, again the FLOP costs for SP are de-
creased by a factor (1−p). Furthermore, the overhead K2

/cin
is constant since the g(n) are not pruned. Similar formulas
to Eqs. (A.7) and (A.8) hold also in the backpropagation
case which results in a constant overhead of IP compared to
SP for computing ∂L

∂X equal to K2
/cin times the costs of the

dense computation of ∂L
∂X .

Gradients for coefficients.

The backpropagation formulas for the spatial and FB coeffi-
cients are given by

∂L
∂h

(α,β)
i,j

=

(
∂L

∂Y (α)
⋆ X(β)

)
i,j

(A.11)

and

∂L
∂λ

(α,β)
n

=

〈
∂L

∂Y (α)
, g(n) ⋆ X(β)

〉
, (A.12)

respectively. Since g(n) ⋆ X(β) is already computed in the
forward pass, both computations for the standard case and
the FB representation have equal FLOP costs. In total, this
equals to 2 · cout · cin ·K2 · d1 · d2 FLOPs for computing
∂L
∂h or ∂L

∂λ . If pruning is applied, this reduces to 2 · cout · cin ·
K2 · d1 · d2 · (1− p) FLOPs for IP and SP, since gradients
for pruned coefficients do not need to be computed.

v

Note, if the size d1 · d2 of Y ∈ Rcout×d1×d2 is bigger
than the kernel size K2 it is even cheaper to compute the
gradient of λ(α,β)

n via

∂L
∂λ

(α,β)
n

=

〈
g(n),

∂L
∂Y (α)

⋆ X(β)

〉
. (A.13)

In Eq. (A.12) there are 2·d1 ·d2 FLOPs needed (if g(n)⋆X(β)

is known which we can assume due to the forward pass)
whereas Eq. (A.13) needs 2 ·K2 FLOPs if ∂L

∂Y (α) ⋆ X
(β) is

known. As we will see in the following, g(n) needs ∂L
∂Y (α) ⋆

X(β) to be computed for all α, β and consequently we can
assume them to be known. In summary we can say that
the computation of the interspace coefficients λ requires the
same number of FLOPs, or even less, compared to the spatial
coefficients.

Gradient for the filter base.

The computation of the gradients ∂L
∂g(n) also generates extra

costs for the backward pass of training interspace represen-
tations. It holds

∂L
∂g(n)

=

cout∑
α=1

cin∑
β=1

λ(α,β)
n ·

(
∂L

∂Y (α)
⋆ X(β)

)
. (A.14)

As shown in Eq. (A.14), ∂L
∂g(n) first needs to compute all

∂L
∂Y (α) ⋆X

(β) = ∂L
∂h(α,β) . This is exactly the cost for comput-

ing the dense gradient ∂L
∂h which needs 2·cin ·cout ·K2 ·d1 ·d2

FLOPs. The scaling and summation in the sum Eq. (A.14)
requires 2 · cin · cout · K2 FLOPs in total. If pruning is
applied, this reduces to 2 · cin · cout · K2 · (1 − p). Al-
together, computing the gradients of g(1), . . . , g(K

2) needs
2 · cout · cin ·K2 · (d1 · d2+(1− p) ·K2) FLOPs. In simple
terms, the total computation of ∂L

∂g lies in O(costs(∂L∂h)).

Summary for the backward pass.

In summary, the computation of ∂L
∂X of IP induces a constant

overhead compared to IP. This corresponds to K2
/cin times

the costs of computing the dense gradient of ∂L
∂X by using

spatial coefficients. On top of that, IP also needs to compute
the gradient for the FB F which is in O(costs(∂L∂h)).

D.3. Upper bounds for gradients.

As Eq. (A.13) and Eq. (A.14) show, jointly optimizing F
and λ leads to non trivial correlations between them. With
a slight abuse of notation we assume for the following dis-
cussion F to be the K2×K2 matrix containing all flattened
g(n). Further, let h, λ ∈ RK2×coutcin contain all spatial and
interspace coefficients of the layer, respectively. Therefore,
it holds h = F · λ. By using ∂L

∂h(α,β) = ∂L
∂Y (α) ⋆ X

(β) and

0.75 0.80 0.85 0.90 0.95 1.00
Pruning Rate p

0

10

20

30

40

50

Ac
tu

al
 S

pe
ed

 U
p

[C
PU

]

LT / VGG16 / CIFAR-10
SP-LT
IP-LT

SP-uniform
IP-uniform

(a)

0 20 40 60 80
FLOP Reduction [%]

93.4

93.6

93.8

94.0

To
p-

1
Te

st
 A

cc
ur

ac
y

LT / VGG16 / CIFAR-10

SP-LT IP-LT Dense

(b)

Figure A6. (a) Speed up on CPU for varying p for SP and IP for
uniform sparsity and LT’s sparsity. (b) Top-1 test accuracy over
FLOPs reduction for IP- and SP-LT.

the Cauchy-Schwartz inequality, the gradients for F and λ
are bounded by∥∥∥∥∂L∂λ

∥∥∥∥
F

≤ ∥F∥F
∥∥∥∥∂L∂h

∥∥∥∥
F

and
∥∥∥∥ ∂L∂F

∥∥∥∥
F

≤ ∥λ∥F
∥∥∥∥∂L∂h

∥∥∥∥
F

.

(A.15)
This shows that upper bounds for ∂L

∂F and ∂L
∂λ are determined

by the spatial gradient ∂L
∂h . This boundedness of the gradi-

ents leads to stable convergence for both, F and λ, while the
convergence behavior of λ is similar to the standard coeffi-
cients h, see Fig. 5b. Moreover, Fig. A3(a) even shows that
adaptive FBs help to overcome vanishing gradients for SNIP
by becoming spatially dense. IP-SNIP can use that to recover
during training from a complete, PaI induced information
loss, while SP-SNIP is stuck with zero gradient flow.

D.4. Real runtime measurements

To measure and compare the real runtime accelerations of
IP and SP for inference, we used scipy’s sparse package.
To be precise, we used scipy.sparse.csr matrix,
see online documentation. As discussed in Sec. D.1, sparse
FB convolutions can be computed by first convolving all
X(β) with all g(n). Afterwards, sparse matrix multiplica-
tions can be used to compute the actual output Y . To rule
out runtime differences induced by mismatches between
sparse implementations of matrix multiplications and con-
volutions, we simulated sparse convolutions with sparse
matrix multiplications of matching dimensions. Therefore,
a sparse convolution h ⋆ X with h ∈ Rcout×cin×K×K and
X ∈ Rcin×H×W corresponds to a matrix-vector multiplica-
tion ĥ · X̂ with ĥ ∈ Rcout·H·W×cin·K2

and X̂ ∈ Rcin·K2

.
We measured the runtime of a VGG16 on input images

X ∈ R3×32×32 (i.e. CIFAR-10) with two different sparsity
configurations, the sparsity distribution found by pruning
with LT, see Sec. 5.3, and uniform sparsity for each layer.
For simplicity, we omit the batch normalization layers and
non-linearities. Runtime is measured on one core of an Intel
XEON E5-2680 v4 2.4 GHz CPU where we used batch size
1 and the mean runtime of 25 runs.

Figure A6(a) shows the comparison between model spar-

vi

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html

sity and the actual runtime speed up on a CPU. Since the used
CSR [A.27] format for sparse coefficients adds additional
overhead to the actually executed computations, runtime is
sped up significantly only for p ≥ 0.75. Note, different
sparsity distributions can lead to varying accelerations for a
similar global pruning rate p. IP indeed has a longer runtime
due to the mentioned extra computations. But by boosting
performance of sparse models, IP reaches similar results than
dense training with 5.2 times speed up and better results than
SP for similar runtime, as shown in Fig. 5a.

For a comparison between actual and theoretical acceler-
ations of IP and SP, the top-1 accuracy over the theoret-
ical FLOPs reduction for the LT experiment is given in
Fig. A6(b). Results for actual sparse speed ups can be seen
in Fig. 5a in the main part of the paper.

E. Transformation rules in the interspace
Since the interspace representation is obtained by a linear

transformation of the standard, spatial representation, we
will derive formulas for this transformation. By knowing
them, it will be straight forward to also determine trans-
formation rules for the corresponding gradients and higher
derivatives. Those transformation rules might be useful if
pruning methods that need first or second order information
are used. We test three methods in our work that need the
information of the gradient, SNIP [A.16], GraSP [A.29] and
SynFlow [A.26]. Moreover, GraSP needs second order in-
formation as well. Since all these methods are applied at
initialization and we use an initialization equivalent to the
standard network in the main part of this work, the gradient
and Hessian are equivalent at that time. Still, if such prun-
ing methods are applied with different initializations, the
knowledge of these transformation rules might be helpful
to overcome scaling problems. Furthermore, we believe the
transformation rules to be fruitful for analyzing the infor-
mation flow in FB-CNNs which we think is an interesting
direction for future work.

Again we will assume the special case considered in the
paper, i.e. F forming a basis.

E.1. Transformation rules for filters

For a given layer in a CNN, let α denote the output
channel, β the corresponding input channel and K × K
be the kernel size of a filter h(α,β). For the layer’s FB
F = {g(1), . . . , g(K2)}, the filter’s interspace representa-
tion is given by

h(α,β) =

K2∑
n=1

λ(α,β)
n · g(n) . (A.16)

Here, the FB coefficients of h(α,β) are given by λ(α,β) =

(λ
(α,β)
n)n ∈ RK2

. Let B be the standard basis for RK×K .

Then, the spatial representation of filter h(α,β) is given by

h(α,β) =

K2∑
n=1

h
(α,β)
in,jn

· e(n) =
K2∑
n=1

ϕ(α,β)
n · e(n) , (A.17)

with spatial coefficients ϕ(α,β) := (ϕ
(α,β)
n)n =

(⟨h(α,β), e(n)⟩)n ∈ RK2

and standard basis B given by
B = {e(1), . . . , e(K2)} and

e
(n)
i,j = δi,in · δj,jn , (in, jn) ∈ {1, . . . ,K}2 ,

(in, jn) ̸= (im, jm) for n ̸= m .
(A.18)

Consequently,

ϕ(α,β) = Ψ · λ(α,β) , Ψ =
(
⟨g(m), e(n)⟩

)
n,m
∈ RK2×K2

(A.19)
holds. Note, since FBs are shared for at least one layer, the
basis transformation matrix Ψ is not labeled with the input-
and output channels α and β, respectively. But of course,
formulas can be adapted to the case of more than one FB
per layer. Since we assume F to form a basis, the reverse is
given by

λ(α,β) = Ψ−1 · ϕ(α,β) . (A.20)

Note, if we useF as a general dictionary, and not a basis any-
more, a reverse can still be computed by the Moore-Penrose
pseudo inverse Ψ† = ΨT · (Ψ ·ΨT)−1 if F forms a gener-
ating system for RK×K . If F forms a linear independent,
undercomplete dictionary, we can express λ(α,β) = Ψ̂ϕ(α,β)

for a suitable Ψ̂ ∈ R#F×K2

. A reverse of this is given by
ϕ(α,β) = Ψ̂†λ(α,β), where again Ψ̂† = Ψ̂T · (Ψ̂ · Ψ̂T)−1

forms the Moore-Penrose pseudo inverse.

E.2. Transformation rules for gradients

Let L denote the loss function used to train the CNN.
Assuming h(α,β) to be given in the interspace representation
Eq. (A.16),

∂L
∂λ(α,β)

=

(
∂ϕ(α,β)

∂λ(α,β)

)T

· ∂L
∂ϕ(α,β)

= ΨT · ∂L
∂ϕ(α,β)

(A.21)
holds by the chain rule and Eq. (A.19). Consequently,

∂L
∂ϕ(α,β)

= (Ψ−1)T · ∂L
∂λ(α,β)

(A.22)

is true for the gradient as well.
By comparing Eq. (A.20) with Eq. (A.21) (or Eq. (A.19)

with Eq. (A.22)) we see that the coefficients and their corre-
sponding gradients transform complementary to each other
if ΨT ̸= Ψ−1. Note, Ψ−1 = ΨT if and only if Ψ is orthogo-
nal which is equivalent to F forming an orthonormal basis
(ONB).

vii

E.3. Transformation rules for Hessian

In order to compute the Hessian of the loss function,
we have to index all possible filters in a CNN. Let λ(α,β;l)

and ϕ(α,β;l) denote the interspace and spatial coefficients
of a filter in layer l corresponding to input channel β and
output channel α. Here, the basis transformation in layer l is
given by Ψ(l). If a FB is shared for layers l and l + 1, then
Ψ(l) = Ψ(l+1) would hold. Furthermore, K(l) is the filter
size in layer l and c

(l)
out and c

(l)
in denote the number of output

and input channels, respectively. We assume the CNN to
have Lc convolutional layers in total. Let HB be the Hessian
matrix of L w.r.t. to coefficients of B. The corresponding
values of the Hessian are given by

HB((α, β, n; l), (α′, β′, n′; l′)) =
∂2L

∂ϕ
(α,β;l)
n ∂ϕ

(α′,β′;l′)
n′

.

(A.23)
Equivalently, the Hessian w.r.t.F is given by HF with values

HF ((α, β, n; l), (α′, β′, n′; l′)) =
∂2L

∂λ
(α,β;l)
n ∂λ

(α′,β′;l′)
n′

.

(A.24)
Using multi-index notation, we can describe the transforma-
tion of the Hessian matrix compactly. For m := (α, β, n; l)
and m′ := (α′, β′, n′; l′), define

ϕm := ϕ(α,β;l)
n , ϕ := (ϕm)m∈M (A.25)

λm := λ(α,β;l)
n , λ := (λm)m∈M (A.26)

Ψm,m′ := δα,α′ · δβ,β′ · δl,l′ ·Ψ(l)
n,n′ , (A.27)

Ψ := (Ψm,m′)m,m′∈M , (A.28)

where all possible multi-indices are given by

M :=

Lc⋃
l=1

c
(l)
out⋃

α=1

c
(l)
in⋃

β=1

K2
(l)⋃

n=1

{(α, β, n; l)} . (A.29)

Let d := #M be the dimension of the CNN. For all ma-
trices/vectors A ∈ Rd1×d and B ∈ Rd×d2 with d1, d2 ∈
{1, d}, indexed with multi-indices, we define multi-index
multiplication via

(A ·B)m,m′ :=
∑

m′′∈M
Am,m′′ ·Bm′′,m′ . (A.30)

Using the multi-index notation, together with Eqs. (A.25),
(A.26) and (A.28), leads to simple transformations of co-
efficients and their gradients for the whole CNN, given by

ϕ = Ψ · λ ,
∂L
∂ϕ

= (Ψ−1)T · ∂L
∂λ

(A.31)

with the transpose of a multi-index matrix A defined via

AT
m,m′ := Am′,m (A.32)

and

Ψ−1 := (Ψ−1
m,m′)m,m′∈M (A.33)

Ψ−1
m,m′ := δα,α′ · δβ,β′ · δl,l′ · (Ψ(l))−1

n,n′ . (A.34)

It holds

HB
m,m′ =

∂2L
∂ϕm∂ϕm′

(A.35)

=
∂

∂ϕm

(∑
m′′∈M

Ψ−1
m′′,m′ · ∂L

∂λm′′

)
(A.36)

=
∑

m′′,m′′′∈M
Ψ−1

m′′′,m ·HF
m′′′,m′′ ·Ψ−1

m′′,m′

(A.37)

=
(
(Ψ−1)T ·HF ·Ψ−1

)
m,m′ . (A.38)

F. Computation of pruning scores
In the following, we will derive the computations of the

pruning scores used in the experimental evaluation in Sec. 5
in the main paper. We will present the original scores for
SP and their corresponding IP version. In this Section, we
assume all FBs F to form bases and fully connected layers
to be described by 1× 1 convolutions.

F.1. Pruning scores in general

In Secs. F.2 - F.6, five different methods for computing
a pruning score vector S ∈ Rd are presented. These are the
pruning scores used in our experimental evaluation.

A global pruning score means that the whole network is
pruned altogether based on this score vector. Here, d denotes
the number of all prunable parameters – for simplicity pooled
in a big vector λ ∈ Rd. For each parameter λj , there exists
exactly one corresponding pruning score Sj . The higher a
pruning score, the more important the corresponding parame-
ter is. Thus, for pruning a network with prunable parameters
λ to pruning rate p ∈ [0, 1], only the k biggest entries in S
are not pruned, where

k := ⌊(1− p) · d⌋ . (A.39)

Consequently, the global pruning mask µ ∈ {0, 1}d is de-
fined via

µj =

{
1 , Sj belongs to the k biggest entries in S

0 , else
.

(A.40)
After the pruning mask is computed, the network’s prunable
parameters are masked with the pruning mask via λ⊙ µ.

Note, for DST methods, we use layerwise pruning. The
pruning score is computed equivalent to the global case
but each layer is pruned with an individual pruning rate.
Consequently, the number of pruned parameters is computed
for each layer individually.

viii

F.2. Random

Random pruning scores are easy to obtain. For each
coefficient ϕ(α,β;l)

n in the SP case or λ(α,β;l)
n in the IP case, a

corresponding random number is drawn i.i.d. from aN (0, 1)
distribution.

F.3. Magnitude

Magnitudes are used as pruning criterion for LTs [A.7],
the DST methods SET [A.18] and RigL [A.6], FT [A.22] and
GMP [A.8]. Using magnitudes as pruning criterion assumes
that big coefficients are more likely to significantly influence
the network’s output than smaller ones. The corresponding
formula is straight forward and given by

SMag(α, β, n; l,B) :=
∣∣∣ϕ(α,β;l)

n

∣∣∣ . (A.41)

The corresponding formula for the FB representation is given
by

SMag(α, β, n; l,F) :=
∣∣∣λ(α,β;l)

n

∣∣∣ . (A.42)

By the transformation rules for the coefficients Eq. (A.19),
it holds ∥∥∥ϕ(α,β;l)

∥∥∥ =
∥∥∥Ψ(l)λ(α,β;l)

∥∥∥ . (A.43)

Consequently, K ×K filters h(α,β;l) do not need to have the
same total pruning score in the spatial and FB representation,
but might be scaled differently. We used magnitude pruning
during or after training, where usually ϕ(α,β;l) ̸= λ(α,β;l).
Even though magnitude pruning is normally used for the
spatial representation, we did not have any scaling issues in
the IP setting. This again indicates that jointly optimizing
the FBs and their coefficients is stable.

F.4. SynFlow

SynFlow [A.26] is a pruning score, calculating the contri-
bution of a parameter to the CNN’s overall information flow.
This is done, by differentiating the so called L1 path norm
of the network. The formula is given by

SSynFlow(α, β, n; l,B) :=
∂R

∂ϕ
(α,β;l)
n

· ϕ(α,β;l)
n , (A.44)

with
R :=

∑
p∈P

∏
ϕ

(α,β;l)
n ∈p

|ϕ(α,β;l)
n | . (A.45)

Here,

P = {{ϕ(α1,β;1)
n1

, ϕ(α2,α1;2)
n2

, . . . , ϕ
(αLc ,αLc−1

;Lc)
nLc

}}
(A.46)

describes all existing paths in a CNN which start in the input
layer and end in the output layer.

Consequently, the corresponding SynFlow score w.r.t.
coefficients for the FBs is given by

SSynFlow(α, β, n; l,F) :=
∂R

∂λ
(α,β;l)
n

· λ(α,β;l)
n . (A.47)

The basis transformation between B and F does not change
the total pruning score of a filter h(α,β;l). This can be seen
by

K2∑
n=1

SSynFlow(α, β, n; l,B) (A.48)

=

〈
∂R

∂ϕ(α,β;l)
, ϕ(α,β;l)

〉
(A.49)

=

〈(
Ψ(l)−1

)T ∂R
∂λ(α,β;l)

,Ψ(l)λ(α,β;l)

〉
(A.50)

=

〈
∂R

∂λ(α,β;l)
,Ψ(l)−1

Ψ(l)λ(α,β;l)

〉
(A.51)

=

〈
∂R

∂λ(α,β;l)
, λ(α,β;l)

〉
(A.52)

=

K2∑
n=1

SSynFlow(α, β, n; l,F) . (A.53)

The second equality is induced by the transformation formu-
las Eqs. (A.19) and (A.22). By having the same total pruning
score for a filter for coefficients w.r.t. F and B, we do not
need to worry about possible scaling issues for the SynFlow
score.

F.5. SNIP

SNIP [A.16] computes a so called saliency score for each
parameter of a CNN before training. The idea is to measure
the effect of changing the activation of a coefficient on the
loss function. If this effect is big, the corresponding coeffi-
cient is trained, otherwise it is pruned. Let ϕ(α,β;l) ∈ RK2

(l)

be the vector consisting of all spatial coefficients in the l-th
layer of a CNN with input channel β and output channel α.
Its saliency score is then computed as

SSNIP (α, β, n; l,B) :=
∣∣∣∣∣ ∂L(m · ϕ(α,β;l)

n)

∂m

∣∣∣∣∣
m=1

∣∣∣∣∣ (A.54)

=

∣∣∣∣∣ ∂L
∂ϕ

(α,β;l)
n

· ϕ(α,β;l)
n

∣∣∣∣∣ , (A.55)

where m ∈ R models the activation of the filter value and L
is the used loss function. The second equality is induced by
using the chain rule [A.29].

ix

The corresponding SNIP score w.r.t. F is given by

SSNIP (α, β, n; l,F) :=
∣∣∣∣∣ ∂L(m · λ(α,β;l)

n)

∂m

∣∣∣∣∣
m=1

∣∣∣∣∣ (A.56)

=

∣∣∣∣ ∂L
∂λ

(α,β;l)
n

· λ(α,β;l)
n

∣∣∣∣ . (A.57)

By inserting the transformation formulas (A.19) and (A.22)
into Eq. (A.55), we get the relationship for the SNIP score
of a filter h(α,β;l) as

SSNIP (α, β; l,B) (A.58)

:=(SSNIP (α, β, n; l,B))K
2

n=1 (A.59)

=

∣∣∣∣(Ψ(l)−1
)T

∂L
∂λ(α,β;l)

∣∣∣∣⊙ ∣∣∣Ψ(l)λ(α,β;l)
∣∣∣ . (A.60)

By comparing Eqs. (A.57) and (A.60), we see that changing
the basis from B to F leads to different transformations of
the gradient and the basis coefficient for a non-orthonormal
FB F .

In our experiments in the main body of the work, we
computed the SNIP score with F = B, thus spatial and FB
SNIP scores are equivalent. But, if arbitrary FBs are used,
the scaling Eq. (A.60) might cause problems and should be
taken into account.

F.6. GraSP

The GraSP score [A.29] approximates the influence of the
removal of a spatial coefficient onto the network’s gradient
flow before training starts, the so called importance score.
Using multi-index notation, it is computed as

SGraSP (m;B) := −
(
HB · ∂L

∂ϕ

)
m

· ϕm . (A.61)

The corresponding score w.r.t. to basis coefficients F is
given by

SGraSP (m;F) := −
(
HF · ∂L

∂λ

)
m

· λm . (A.62)

By inserting the transformation rules for the coefficient, gra-
dient and Hessian matrix, we derive

−
(
HB · ∂L

∂ϕ

)
m

· ϕm (A.63)

=−
(
(Ψ−1)T ·HF ·Ψ−1 · (Ψ−1)T · ∂L

∂λ

)
m

· (Ψ · λ)m .

(A.64)

Therefore, the GraSP score is scaled differently for vary-
ing layers. Similar to the SNIP score, scaling issues might
needed to be handled if FBs do not form ONBs.

Algorithm A1 Standard interspace initialization for a FB
2D convolutional layer

Require: Filter size K × K, number of output channels
cout, number of input channels cin

1: µh ← 0 mean of spatial coefficients
2: σh ←

√
2

cin·K2 variance of spatial coefficients

3: Initialize g(1), . . . , g(K
2) via g(n) = e(n) for all n =

1, . . . ,K2

4: Initialize λ
(α,β)
n ∼ N (µh, σ

2
h) i.i.d. for all α ∈

{1, . . . , cout}, β ∈ {1, . . . , cin}, n ∈ {1, . . . ,K2}
5: return FB F = {g(1), . . . , g(K2)}, FB coefficients λ =

(λ
(α,β)
n)α,β,n

On the other hand, if all FBs form ONBs, Eq. (A.64)
reduces to

SGraSP (m;B) = −
(
Ψ ·HF · ∂L

∂λ

)
m

·(Ψ·λ)m. (A.65)

Similar to SynFlow, it therefore holds∑
m∈Mα,β;l

SGraSP (m;B) =
∑

m∈Mα,β;l

SGraSP (m;F)

(A.66)
forMα,β;l := {(α, β, n; l) : n = 1, . . . ,K2

(l)}, the multi-
indices corresponding to an arbitrary filter h(α,β;l). In this
case, the total pruning score of a filter h(α,β;l) does not
depend on the representation.

G. Pruning methods and initialization of the in-
terspace

In our experiments, we used the so called kaiming
normal initialization [A.11] for the standard CNNs. Mean-
ing that h(α,β)

i,j ∼ N (µh, σ
2
h) i.i.d. with

µh = 0 and σh =

√
2

cin ·K2
. (A.67)

We initialized all FB-CNNs such that their spatial represen-
tations follow a kaiming normal initialization, see Algs.
A1 - A3. For simplicity, we propose the initialization of FB
coefficients together with the FB. Of course, if a FB is shared
for more than one layer, it has to be initialized just once.

Derivation of rescaling in Algorithm A3

In Alg. A3, F may contain N ̸= K2 elements. Thus, ob-
taining an equivalent initialization to the spatial kaiming
normal initialization can not always be obtained by a
simple basis transformation. Consequently, we rescale F

x

Algorithm A2 Random ONB interspace initialization for a
FB 2D convolutional layer

Require: Filter size K × K, number of output channels
cout, number of input channels cin

1: µh ← 0 mean of spatial coefficients
2: σh ←

√
2

cin·K2 variance of spatial coefficients

3: Initialize g̃(1), . . . , g̃(K
2) ∈ RK×K with g̃

(n)
i,j ∼

N (0, 1) i.i.d. ◃ {g̃(1), . . . , g̃(K2)} with P = 1 lin.
independent

4: Apply Gram-Schmidt on {g̃(1), . . . , g̃(K2)} to obtain
ONB F = {g(1), . . . , g(K2)}

5: Initialize spatial coefficients ϕ(α,β)
n ∼ N (µh, σ

2
h) i.i.d.

for all α ∈ {1, . . . , cout}, β ∈ {1, . . . , cin}, n ∈
{1, . . . ,K2}

6: Compute basis transformation matrix Ψ according to
Eq. (A.19)

7: λ(α,β) ← ΨT · ϕ(α,β) FB coefficients
8: return FB F = {g(1), . . . , g(K2)}, FB coefficients λ =

(λ
(α,β)
n)α,β,n

Algorithm A3 Random interspace initialization for a FD
2D convolutional layer with #F = N arbitrary

Require: Size of filter dictionary N , filter size K×K, num-
ber of output channels cout, number of input channels
cin

1: µh ← 0 mean of spatial coefficients
2: σh ←

√
2

cin·K2 variance of spatial coefficients

3: Initialize g̃(1), . . . , g̃(N) ∈ RK×K with g̃
(n)
i,j ∼ N (0, 1)

i.i.d. ◃ {g̃(i1), . . . , g̃(im)} with i1 ̸= . . . ̸= im and
m ≤ K2 with P = 1 lin. independent

4: Compute pixelwise sample mean µ̃i,j and sample vari-
ance σ̃i,j according to Eq. (A.68)

5: g
(n)
i,j ←

√
1
N − 1

N2 ·
g̃
(n)
i,j −µ̃i,j

σ̃i,j
+ 1

N ◃ rescale FD

6: Initialize λ
(α,β)
n ∼ N (µh, σ

2
h) i.i.d. for all α ∈

{1, . . . , cout}, β ∈ {1, . . . , cin}, n ∈ {1, . . . , N}
7: return FD F = {g(1), . . . , g(N)}, FD coefficients λ =

(λ
(α,β)
n)α,β,n

in order to mimic a kaiming normal initialization of
spatial coefficients if FB coefficients are initialized with a
kaiming normal initialization as well.

Let µi,j and σ2
i,j be the pixel wise sample mean and

sample variance of the FD F with arbitrary size N ≥ 1, i.e.

µi,j :=
1

N

N∑
n=1

g
(n)
i,j and σ2

i,j :=
1

N

N∑
n=1

(g
(n)
i,j − µi,j)

2 .

(A.68)
By using Eq. (A.68) it holds for an arbitrary i.i.d. initializa-
tion of λ with mean µλ and variance σ2

λ

E[hi,j] = E[
N∑

n=1

λng
(n)
i,j] =

N∑
n=1

E[λn]g
(n)
i,j = µλNµi,j

(A.69)

and

E[h2
i,j] =

∑
n,m

E[λnλm]g
(n)
i,j g

(m)
i,j (A.70)

=
∑
n

E[λ2
n]g

(n)
i,j

2
+
∑
n

∑
n ̸=m

E[λn]
2g

(n)
i,j g

(m)
i,j

(A.71)

= (σ2
λ + µ2

λ)
∑
n

g
(n)
i,j

2
+ µ2

λ

∑
n

∑
n ̸=m

g
(n)
i,j g

(m)
i,j

(A.72)

= σ2
λ

∑
n

g
(n)
i,j

2
+ µ2

λ

∑
n,m

g
(n)
i,j g

(m)
i,j (A.73)

= Nσ2
λ(σ

2
i,j + µ2

i,j) + µ2
λN

2µ2
i,j . (A.74)

We now want to determine µi,j and σi,j such that E[hi,j] =
µλ and E[h2

i,j] = σ2
λ + µ2

λ holds, i.e. the distribution of λ
and h have the same mean and variance. By Eq. (A.69),
setting µi,j = 1/N guarantees E[hi,j] = µλ. By inserting
µi,j = 1/N into Eq. (A.74), we see that σ2

i,j = 1/N − 1/N2

implies E[h2
i,j] = σ2

λ + µ2
λ. Consequently, FDs are rescaled

in Alg. A3 to have pixelwise sample mean µi,j = 1/N and
sample variance σ2

i,j = 1/N − 1/N2.

G.1. General setup

For SP and the dense baselines, we initialized the standard
CNN with the kaiming normal initialization. For IP, we
initialize networks according to Alg. A1 for all experiments
in the main body of the text. In Sec. B, also Algs. A2 and A3
are used as initializations for the interspace.

Pruning masks are computed according to the formulas
described in Sec. F for SP and IP. In the following we will
describe the used pruning methods in detail.

G.2. Lottery tickets with resetting coefficients

LTs with resetting coefficients to an early training iter-
ation [A.7] are obtained as follows. We first train the net-
work to epoch t0 = 500 and store the corresponding model,
optimizer, etc. Afterwards, the network is trained to con-
vergence. Then, 20% of the coefficients are pruned, based

xi

on their magnitudes. All non-zero parameters are reset to
their values at training time t0 = 500 and pruned ones are
fixed at zero from now on. Thus, contrarily to DST, a pruned
coefficient will never be able to recover. The training sched-
ule parameters, like learning rate or moving averages for
batch normalization and SGD with momentum, are reset to
their corresponding value at t0 as well. For IP, also the FBs
are reset to step t0. Then, the network is again trained to
convergence, 20% of the non-zero coefficients are pruned
and the remaining non-zero parameters are reset again. This
is done, until the desired pruning rate is reached. Note, for
the last pruning step also < 20% of the non-zero parameters
might be pruned to exactly match the desired pruning rate. If
the final pruning rates is reached, the network with desired
sparsity is trained for a last, final time. All in all,

k = 1 +

⌈
log(1− p)

log 4− log 5

⌉
(A.75)

trainings are needed to obtain and train a network with spar-
sity p using this iterative approach.

Following [A.7], we do not prune the fully connected
layer for LTs but keep it dense.

G.3. Dynamic sparse training

Dynamic sparse training methods adapt the network’s
pruning mask during training [A.2,A.4,A.6,A.17,A.18,A.19].
In this work we use SET [A.18] which is based on estimating
the importance of coefficients via magnitude pruning and
regrowing coefficients due to a random selection. RigL [A.6]
improves this approach by regrowing coefficients which have
the biggest gradient magnitudes.

Before training, the networks are pruned randomly. It was
shown in [A.6] that using layer wise sparsity corresponding
to an Erdős-Rényi-kernel leads to good results. This means
that each layer has sparsity depending on its size, i.e.

1− ε · c
(l)
out + c

(l)
in + 2 ·K(l)

c
(l)
out · c(l)in ·K2

(l)

, (A.76)

and ε is a global parameter, tuned such that a global sparsity
of p is obtained.

During training, the pruning mask is frequently updated.
For this, parameters are pruned for each layer with rate pt.
To be precise, all non-zero parameters in a layer are pruned
with the rate pt. The pruning rate pt depends on the training
step t and decays with a cosine schedule in order to improve
convergence [A.6]. It holds

pt = pmin+
1

2
(pinit − pmin) ·

(
1 + cos

(
tπ

T

))
(A.77)

where T is the number of total training steps, pmin = 0.005
the minimal pruning rate and pinit = 0.5 the initial rate used

for updating the pruning mask. Of course, in each layer an
equal number of non trained coefficients are regrown after
pruning. Following [A.18] and [A.6], regrown coefficients
are initialized with value 0 but are updated via SGD from
this moment on.

SET and RigL work optimal for different pruning mask
update frequencies [A.17]. According to [A.17], we update
pruning masks each 1, 500 training steps for SET and each
4, 000 steps for RigL.

G.4. Pruning at initialization

We test PaI methods, SNIP [A.16], GraSP [A.29] and
SynFlow [A.26] together with random PaI. In contrast to
LTs and DST, PaI is quite simple. For SNIP and GraSP we
compute the pruning scores described in Secs. F.5 and F.6
with the help of 100 batches of training data for the CIFAR-
10 experiments and 15 for ImageNet. As proposed by [A.26],
we compute the pruning scores for SNIP and GraSP with all
batch normalization layers [A.13] set to PyTorch’s train
mode. Afterwards, all coefficients are pruned one-shot.

The GraSP scores for SP, Eq. (A.61), and IP, Eq. (A.62),
require the computation of a Hessian vector product H · g.
Fortunately, not the whole Hessian H needs to be computed
to evaluate such products. For this, we use the linearity of the
derivative. For H ∈ Rd×d and an arbitrary vector v ∈ Rd, it
holds

(H · v)i =
∑
j

∂2L
∂λi∂λj

· vj (A.78)

=
∂

∂λi

∑
j

∂L
∂λj

vj

 (A.79)

=
∂

∂λi

〈
∂L
∂λ

, v

〉
, (A.80)

and consequently H · v =
∂⟨ ∂L

∂λ ,v⟩
∂λ . By using v as the fixed

gradient gv = ∂L
∂λ , we can compute H · gv with only three

backward passes. The first one is needed to compute the
fixed gradient gv. The second and third are required to
compute H · gv =

∂⟨ ∂L
∂λ ,gv⟩
∂λ . An implementation of this can

be found in the official code base for GraSP, see this link
(MIT license).

In contrast to these one-shot methods, pruning masks
for SynFlow are computed in an iterative fashion. For this
purpose, we compute the pruning score proposed in Sec. F.4
with one forward- and backward pass, prune a small fraction
of elements and repeat it 100 times. The pruning rate grows
with an exponential schedule [A.26] which gives the pruning
rate

pk = 1− (1− p)
k/100 (A.81)

after the kth pruning iteration. For computing the SynFlow
score, we set all batch normalization layers to eval mode,

xii

https://github.com/alecwangcq/GraSP

as suggested by [A.26].

G.5. Gradual Magnitude Pruning

Following [A.8] we gradually sparsify the model based
on the coefficients’ magnitudes. After each N training it-
erations, the pruning rate is increased and new weights are
pruned. The pruning rate at iteration k ·N is given by

p(k·N) =

0, k ·N < t0

p ·
(
1−

(
1− k·N−t0

t1−t0

)3)
, k ·N ∈ [t0, t1]

1, k ·N > t1

.

(A.82)
Here, p denotes the final pruning rate and t0, t1 are the train-
ing iterations where the gradual pruning begins and ends,
respectively. For each iteration k · N with k ∈ N, the
p(k · N) · d weights with smallest magnitude are pruned.
Since pruned weights are frozen at 0, those weights will be
pruned again and they will therefore never recover.

We follow the suggestions in [A.8] for choosing t0, t1
and N for the final pruning rates p ∈ {0.8, 0.9} for the
ResNet50 on ImageNet (summarized in this table). Since we
use a different batch size than [A.8] in our experiments (256
compared to 1, 024), we adapt their choices for t0, t1 and N
to our batch size by multiplying them by 4. However, these
choices are not optimized for batch size 256 and we therefore
report slightly worse results than [A.8]. For our experiments,
we use N = 8, 000, t0 = 160, 000 and t1 = 400, 000 for
p = 0.8. For p = 0.9 we set N = 8, 000, t0 = 160, 000 and
t1 = 304, 000.

G.6. Fine tuning

We also compare IP and SP for magnitude pruning ap-
plied on a pre-trained, dense network while the sparse net-
work is fine-tuned afterwards. As suggested by [A.22], we do
not use a classical fine-tuning setup beginning with a small
learning rate, but use the setup of the dense pre-training also
for fine-tuning. Thus, the sparse fine-tuning starts with a
high learning rate. Naturally, for IP we use the pre-trained
FBs as starting point for the fine-tuning. For FT, we use the
same training setup as for RigL.

H. Experimental setup
In this Section, we describe the setup for the experiments

discussed in the main body of the paper and in Sec. B. Our ex-
periments were conducted on an internal cluster with CentOS
Linux release 7.9.2009 (Core). We used Python 3.8 with the
deep learning framework PyTorch1.9 [A.21] (BSD license)
together with cudatoolkit 10.2 [A.20]. As hardware we had
an Intel XEON E5-2680 v4 2.4 GHz CPU and n NVIDIA
GeForce 1080ti GPUs, where n = 1 for the CIFAR-10 ex-
periments, n ∈ {2, 4} for ResNet50 on ImageNet and n = 8

for ResNet18 on ImageNet. Further details on the training
time for one epoch, the number of used CPU cores, used
RAM and GPU memory are given in Tab. A2.

Since we compare and adapt different pruning methods,
we used the publicly available codes for reproducing the
results and modifying them for the IP setting. These are:
• Link to code for SynFlow [A.26] (unknown license),
• Link to code for GraSP [A.29] (MIT license),
• PyTorch adaption of link to code for SNIP [A.16] (MIT

license),
• Link to code as the official PyTorch version for Lottery

Tickets [A.7] (MIT license),
• Link to code as a base for DST methods which is the

official code for [A.17] (unknown license). In [A.17],
training schedules for SET [A.18] and RigL [A.6] are
improved. This code base is also used for FT [A.22]
and GMP [A.8].

For the IP versions of these pruning methods, we additionally
updated the code to use Alg. 1 as a 2D convolution.

The initializations of the used CNNs and FB-CNNs are
described in Sec. G. Used hyperparameters are summarized
in Tab. A3. We also trained the dense standard networks
with the same training schedules as the pruned ones. Results
for the dense models can be found in Tab. A2.

Training schedule. As common in the literature of sparse
training, see for example [A.26,A.16,A.29], no hyperparam-
eter tuning is done in this work. We want to highlight, that
all used training setups are chosen from one of the adapted
pruning methods. Especially, FBs and FB coefficients are
trained with the standard learning rates, optimized for train-
ing spatial coefficients.

For PaI on CIFAR-10, we used the setup from [A.16],
whereas SET uses the training schedule from [A.17]. The
CIFAR-10 experiment for LTs is equal to the one used in
[A.7]. For ImageNet on ResNet18, we used the standard
PyTorch ImageNet training (see this link) (BSD 3-clause
license) as baseline for our training – the same as used in
[A.29]. Results can be further improved by adding learning
rate warm-up for 5 epochs [A.10] and label smoothing [A.25]
with smoothing parameter ε = 0.1. This improvement is
inherited from [A.17] and applied to train RigL on ResNet50.
For FT, we use the same training hyperparameters as for
RigL whereas we use the suggested one from the original
paper [A.8] for GMP.

CIFAR-10. CIFAR-10 [A.14] consists of 60, 000 32× 32
RGB images. CIFAR-10 is a publicly available dataset with,
best to our knowledge, no existing licenses. Authors are
allowed to use the datasets for publications if the tech report
[A.14] is referenced. CIFAR-10 has 10 classes with 6, 000
images per class. The data is split into 50, 000 training and
10, 000 test images. For each training, we randomly split the

xiii

https://github.com/google-research/google-research/blob/master/state_of_sparsity/results/sparse_rn50/technique_comparison/rn50_magnitude_pruning.csv
https://github.com/ganguli-lab/Synaptic-Flow
https://github.com/alecwangcq/GraSP
https://github.com/namhoonlee/snip-public
https://github.com/facebookresearch/open_lth
https://github.com/Shiweiliuiiiiiii/In-Time-Over-Parameterization
https://github.com/pytorch/examples/tree/master/imagenet

Dataset/Model Mean ± Std # Params
FB Params
fine sharing

Time 1
epoch [s]

#GPUs
GPU

memory
#CPU
cores

RAM

CIFAR-10/VGG16 93.41± 0.07% 15.3mio 1, 053 23.7 1 11 GB 1 12 GB
CIFAR-10/VGG16-LT 93.58± 0.10% 14.7mio 1, 053 21.9 1 11 GB 1 12 GB
ImageNet/ResNet18 69.77± 0.06% 11.7mio 1, 296 2, 770.5 8 8× 11 GB 8 8× 12 GB
ImageNet/ResNet50 (RigL & FT) 77.15± 0.04% 25.6mio 3, 697 4, 354.2 2 2× 11 GB 4 4× 12 GB
ImageNet/ResNet50 (GMP) 76.64± 0.06% 25.6mio 3, 697 2, 622.8 4 4× 11 GB 8 8× 12 GB

Table A2. Top-1 test accuracies for densely trained models with additional information, including the hardware setup. Note, # FB parameters
for fine sharing is the most number of extra parameters induced by the interspace representation. We suggest to use at least 2 times the
number of CPU cores than GPUs, otherwise data loading becomes a bottleneck (compare ResNet18 and ResNet50 for GMP which have
approximately the same runtime despite different network sizes and # GPUs).

Experiment CIFAR-10 (no LTs) CIFAR-10 (LTs) ImageNet (PaI) ImageNet (RigL & FT) ImageNet (GMP)
Network VGG16 VGG16-LT ResNet18 ResNet50 ResNet50
Trainings 5 5 3 3 3

Epochs 250 160 90 100 100

Batch Size 128 128 512 128 256

GPUs 1 1 8 2 4

Optimizer: SGD- Momentum Momentum Momentum Momentum Momentum
Momentum 0.9 0.9 0.9 0.9 0.9

Learning Rate 0.1 0.1 0.1 0.1 0.1

LR Decay ×0.1 ×0.1 ×0.1 ×0.1 ×0.1

every 30k iterations epochs 80/120 epochs 30/60 epochs 30/60/90 epochs 30/60/80
LR Warm-up ✗ ✗ ✗ 5 epochs, linear 5 epochs, linear
Weight Decay 5 · 10−4 10−4 10−4 10−4 10−4

Label smoothing ✗ ✗ ✗ ε = 0.1 ε = 0.1

Table A3. Setups for experiments in the main body of the paper and Sec. B. Each run of the # trainings was executed with a different
random seed.

training images into two parts, 45, 000 images for training
and 5, 000 images for validation. All images for training,
validation and testing are normalized by their channel wise
mean and standard deviation. Furthermore, we additionally
use the standard data augmentation for CIFAR on the training
images. This is given by cropping and random horizontal
flipping of the images. Test results are reported for the
early stopping epoch, the epoch with the highest validation
accuracy. Used hyperparameters are summarized in Tab. A3.

ImageNet. The ImageNet ILSVRC2012 [A.23] dataset is
an image classification dataset, containing approximately 1.2
million RGB images for training and 150, 000 RGB images
for validation, divided into 1, 000 classes. ImageNet has
a custom license allowing non-commercial research. To
be allowed to use ImageNet for non-commercial research,
access to the image database has to be requested – which we
did. Full terms for the usage of the ImageNet database can
be found in this link.

Again, all images are normalized for each channel. Train-
ing images are randomly cropped to size 224 × 224 and
randomly flipped in the horizontal direction. The valida-
tion images are resized to size 256× 256 and their central

224× 224 pixels are used for validation. For the ResNet50
experiment, we also add label smoothing on the training loss
with a smoothing factor 0.1. As common in the literature, we
report results on the validation set, since labels for the test
set are publicly not available. Hyperparameters are provided
in Tab. A3.

I. Network architectures

In this Section we provide the used network architec-
tures VGG16 [A.24] and the adapted version VGG16-LT for
CIFAR-10, as well as ResNet18 and ResNet50 [A.12] for
ImageNet.

The architectures are shown in Tabs. A4 to A6. Note, we
use two different versions of a VGG16, a small one for the
LT experiments and a bigger one for the remaining exper-
iments. A graphical description of the residual block and
the bottleneck block used for ResNets, is shown in Figs. A7
and A8, respectively. Furthermore, all architectures are used
in their standard form or with FB convolutions. Therefore,
(FB) always indicates, that a FB version of the filter is used
for the FB-CNN. Not all convolutional layers are marked
with a (FB), since we only apply the FB formulation on

xiv

https://www.image-net.org/download

3× 3 (FB) Conv2D(cin, cout, s× s)

BatchNorm2D

ReLU

3× 3 (FB) Conv2D(cout, cout, 1× 1)

BatchNorm2D

⊕
ReLU

1× 1 Conv2D(cin, cout, s× s)

BatchNorm2D

Identity

3× 3 (FB) Conv2D(cout, cout, 1× 1)

BatchNorm2D

ReLU

3× 3 (FB) Conv2D(cout, cout, 1× 1)

BatchNorm2D

⊕
ReLU

Identity

(FB) ResBlock×2(cin, cout, s× s)

← s > 2 or cin ̸= cout← → s = 1 and cin = cout→

Figure A7. Architecture of a (FB) ResBlock×2 with cin input
channels, cout output channels and stride s × s for the first (FB)
convolution. The first residual connection is is a standard 1× 1 2D
Convolution followed by a BatchNorm2D layer if s > 1 or
cin ̸= cout. However, if cin = cout and s = 1, the first residual
connection is simply an identity mapping. The second residual
connection is always an identity mapping. All (FB) Conv2D
layers do not have biases.

convolutional layers with kernel size K > 1. Additionally,
we indicate the layers which share one FB for coarse,
medium and fine FB sharing in Tabs. A4 to A6.

All tensor dimensions of standard 2D convolutional fil-
ters are given as cout × cin × K × K, where cin equals
the number of input channels, cout the number of output
channels and K ×K the size of each convolutional kernel.
FB convolutions have coefficients represented by a tensor of
size cout×cin×K2. For pooling layers, K×K denotes the
tiling size. In the case of linear layers, the tensor size is given
as cout × cin, where cin is the number of incoming neurons
and cout the number of outgoing neurons. For training the
networks, we used the cross entropy loss function.

J. Proof of Theorem 1
SDL optimizes a dictionary F ∈ Rm×M jointly with its

coefficients R ∈ RM×n w.r.t. the non-convex problem

inf
F,R
∥U − F ·R∥F s.t. ∥R∥0 ≤ s , (A.83)

for a target U ∈ Rm×n and sparsity constraint s. In our con-
text U corresponds to a convolutional layer, the dictionary F
to the layer’s FB (FD) F and R to the FB (FD) coefficients.
Standard magnitude pruning can be seen as a special case
of SDL where the dictionary F is fixed to form the standard
basis, i.e. F = idRm . Accordingly,

inf
Φ
∥U − Φ∥F s.t. ∥R∥0 ≤ s (A.84)

1× 1 Conv2D(cin, cmid, s× s)

BatchNorm2D

ReLU

3× 3 (FB) Conv2D(cmid, cmid, 1× 1)

BatchNorm2D

ReLU

1× 1 Conv2D(cmid, cout, 1× 1)

BatchNorm2D

⊕
ReLU

1× 1 Conv2D(cin, cout, s× s)

BatchNorm2D

1× 1 Conv2D(cout, cmid, 1× 1)

BatchNorm2D

ReLU

3× 3 (FB) Conv2D(cmid, cmid, 1× 1)

BatchNorm2D

ReLU

1× 1 Conv2D(cmid, cout, 1× 1)

BatchNorm2D

⊕
ReLU

Identity

Repeat last block nb − 2 times

(FB) BottleneckBlock(cin, cmid, cout, nb, s× s)

Figure A8. Architecture of a (FB) BottleneckBlock with
cin input channels, cmid middle channels and cout output channels
and stride s× s for the first 1× 1 (FB) convolution. The number
of small blocks forming the (FB) BottleneckBlock is given
by nb. The first residual connection is is a standard 1 × 1 2D
Convolution followed by a BatchNorm2D layer. The follow-
ing residual connections are always identity mappings. All (FB)
Conv2D layers do not have biases.

0.0 0.2 0.4 0.6 0.8 1.0
Pruning rate

0.0

0.2

0.4

0.6

0.8

1.0

1

Lower bound for ((1) < (2))

10 3 x 3 filters
100 3 x 3 filters
1000 3 x 3 filters
10000 3 x 3 filters

Figure A9. Lower bound 1−δ for P(ε(1) < ε(2)), i.e. the optimiza-
tion problem (A.83) having a smaller solution than the problem
(A.84). Computed for varying numbers n of 3× 3 filters in a layer
and varying pruning rates p ∈ [0, 1].

xv

Module Output Size cin cout K Repeat Stride Padding Bias BatchNorm ReLU Coarse Medium Fine

(FB) Conv2D 32 × 32 3 64 3 × 3 ×1 1 × 1 1 × 1 ✓ ✓ ✓

(FB) Conv2D 32 × 32 64 64 3 × 3 ×1 1 × 1 1 × 1 ✓ ✓ ✓

MaxPool2D 16 × 16 64 64 2 × 2 ×1 2 × 2 0 × 0 ✗ ✗ ✗

(FB) Conv2D 16 × 16 64 128 3 × 3 ×1 1 × 1 1 × 1 ✓ ✓ ✓

(FB) Conv2D 16 × 16 128 128 3 × 3 ×1 1 × 1 1 × 1 ✓ ✓ ✓

MaxPool2D 8 × 8 128 128 2 × 2 ×1 2 × 2 0 × 0 ✗ ✗ ✗

(FB) Conv2D 8 × 8 128 256 3 × 3 ×1 1 × 1 1 × 1 ✓ ✓ ✓

(FB) Conv2D 8 × 8 256 256 3 × 3 ×2 1 × 1 1 × 1 ✓ ✓ ✓ ×2

MaxPool2D 4 × 4 256 256 2 × 2 ×1 2 × 2 0 × 0 ✗ ✗ ✗

(FB) Conv2D 4 × 4 256 512 3 × 3 ×1 1 × 1 1 × 1 ✓ ✓ ✓

(FB) Conv2D 4 × 4 512 512 3 × 3 ×2 1 × 1 1 × 1 ✓ ✓ ✓ ×2

MaxPool2D 2 × 2 512 512 2 × 2 ×1 2 × 2 0 × 0 ✗ ✗ ✗

(FB) Conv2D 2 × 2 512 512 3 × 3 ×3 1 × 1 1 × 1 ✓ ✓ ✓ ×3

MaxPool2D 1 × 1 512 512 2 × 2 ×1 2 × 2 0 × 0 ✗ ✗ ✗

Linear 512 512 512 — ×2 — — ✓ ✓ ✓ Removed for VGG16-LT

Linear 10 512 10 — ×1 — — ✓ ✗ ✗

Table A4. VGG16 and VGG16-LT for CIFAR-10 with coarse, medium and fine FB sharing schemes specified in the last three columns.
Each , connected by either another or , corresponds to exactly one FB F shared for all filters in the corresponding layers. The thin
connection corresponds to MaxPool2D layers which do not use the FBs themselves. Note, for VGG16-LT, the first and second Linear
layers are removed.

Module Output Size cin cout K Stride Padding Bias BatchNorm ReLU Coarse Medium Fine

Conv2D 112 × 112 3 64 7 × 7 2 × 2 3 × 3 ✗ ✓ ✓

MaxPool2D 56 × 56 64 64 3 × 3 2 × 2 1 × 1 ✗ ✗ ✗

(FB) ResBlock×2 56 × 56 64 64 3 × 3 1 × 1 1 × 1 ✗ ✓ ✓ ×4

(FB) ResBlock×2 28 × 28 64 128 3 × 3 2 × 2 1 × 1 ✗ ✓ ✓ ×4

(FB) ResBlock×2 14 × 14 128 256 3 × 3 2 × 2 1 × 1 ✗ ✓ ✓ ×4

(FB) ResBlock×2 7 × 7 256 512 3 × 3 2 × 2 1 × 1 ✗ ✓ ✓ ×4

AvgPool2D 1 × 1 512 512 7 × 7 0 × 0 0 × 0 ✗ ✗ ✗

Linear 1, 000 512 1, 000 — — — ✓ ✗ ✗

Table A5. ResNet18 for ImageNet with (FB) ResBlock×2, shown in Fig. A7. Last three columns declare coarse, medium and
fine FB sharing schemes. Each connected by another corresponds to exactly one FB F shared for all filters in the corresponding layers.
Note, the first convolutional layer has kernel size 7× 7 and we do not use a FB formulation for this layer.

is minimized.

Theorem 1. Let 1 < m ≤ M , 0 < s < m · n and Ui,j ∼
N (0, 1) i.i.d. Further assume that ε(1) is the infimum of
Eq. (A.83) and ε(2) the minimum of Eq. (A.84). Assume Φ∗

to be the minimizer for Eq. (A.84). Then ε(1) < ε(2) holds
with probability P = 1.

If furthermore suppR for Eq. (A.83) is fixed to be equal
to suppΦ∗, then ε(1) ≤ ε(2) and strict inequality holds with
P ≥ 1− δ, where

δ =

0 , if s ̸≡ 0(mod m)
(n

s
m
)

(m·n
s)

, if s ≡ 0(mod m)
. (A.85)

Figure A9 shows the probability of the solution to
Eq. (A.84) being strictly bigger than the solution of

Eq. (A.83) if suppR is restricted to be suppΦ∗. Precisely,
it shows 1−δ for varying pruning rates p. It can be seen that,
except for the trivial case of a network being completely
pruned or being not pruned at all, δ is numerically equal
to zero, even for a network with only 100 filters.A.4 Thus,
despite δ > 0, numerically the chance of ε(1) = ε(2) is equal
to zero.

The proof of Thm. 1 is split in several parts.
• Lemma 1 shows that Eq. (A.84) always has a minimum

and constructs the minimizing Φ∗.
• Lemma 2 will show that for each feasible point Φ0

for Eq. (A.84), there exists an equivalent feasible
point (F0, R0) for Eq. (A.83) with the same sparsity

A.4The minimum δ we computed for non-trivial pruning rates p ∈ (0, 1)
for a network with n = 10 filters of size 3× 3 was given by δ ≤ 10−10.
For n ≥ 100, numerically δ = 0 for all p ∈ (0, 1).

xvi

Module Output Size cin cmid cout nb K Stride Padding Bias BN ReLU
Coarse

adapt
Medium Fine

(FB) Conv2D 112 × 112 3 — 64 — 7 × 7 2 × 2 3 × 3 ✗ ✓ ✓ ×1

MaxPool2D 56 × 56 64 — 64 — 3 × 3 2 × 2 1 × 1 ✗ ✗ ✗

(FB) BottleneckBlock 56 × 56 64 64 256 3 3 × 3 1 × 1 1 × 1 ✗ ✓ ✓ ×3

(FB) BottleneckBlock 28 × 28 256 128 512 4 3 × 3 2 × 2 1 × 1 ✗ ✓ ✓ ×4

(FB) BottleneckBlock 14 × 14 512 256 1, 024 6 3 × 3 2 × 2 1 × 1 ✗ ✓ ✓ ×6

(FB) BottleneckBlock 7 × 7 1, 024 512 2, 048 3 3 × 3 2 × 2 1 × 1 ✗ ✓ ✓ ×3

AvgPool2D 1 × 1 512 — 512 — 7 × 7 0 × 0 0 × 0 ✗ ✗ ✗

Linear 1, 000 512 — 1, 000 — — — — ✓ ✗ ✗

Table A6. ResNet50 for ImageNet with (FB) BottleneckBlock, shown in Fig. A8. Last three columns declare the adapted coarse,
medium and fine FB sharing schemes. Each connected by another corresponds to exactly one FB F shared for all filters in the
corresponding layers.

∥R0∥0 = ∥Φ0∥0 and distance ∥U − F0 · R0∥F =
∥U − Φ0∥F .
• Consequently, Corollary 3 shows that the solution to

Eq. (A.83) is always smaller or equal to the solution of
Eq. (A.84).
• The first part of the proof of Thm. 1 shows that the

solution obtained by Eq. (A.84) can only with a small
chance δ0 ≤ δ be the optimum of Eq. (A.83). This is
based on two facts, first we construct the equivalent
point (F0, R0) to Φ∗ according to Lemma 2. Then, we
show that with a probability of at most δ, (F0, R0) ful-
fills a necessary condition for solving Eq. (A.83). This
condition is given by F0 yielding a local optimumA.5

of the smooth, convex function

f : Rm×M → R , F 7→ ∥U − F ·R0∥2F , (A.86)

which is evaluated by looking at the probability of F0

being a root of ∂f
∂F .

• The second part of Thm. 1 adapts (F0, R0) if suppR0

is not fixed to be equal to suppΦ∗. By setting one
column of Φ∗ as a new basis element, the number of
coefficients needed to match Φ∗ = F∗ · R∗ with the
adapted (F∗, R∗) is reduced. This of course provides
new unused coefficients which are used to better ap-
proximate the target U .

Lemma 1. The optimization problem (A.84) always has a
solution Φ∗ ∈ Rm×n obtained by

Φ∗ = (Φ∗
i,j)i,j with

Φ∗
i,j =

{
Ui,j , if (i, j) ∈ TOPs(U)

0 , else
.

(A.87)

Here,

TOPs(U) := {(i0, j0) ∈ {1, . . . ,m} × {1, . . . , n} : Ui0,j0

belongs to the top s magnitudes of {Ui,j}}
(A.88)

A.5By convexity of f it is therefore a global minimum.

defines the indices corresponding to the s highest magnitudes
of U .

Proof of Lemma 1. To solve Eq. (A.84), we rewrite the opti-
mization problem into its equivalent, squared form

inf
Φ∈Rm×n

∥U − Φ∥2F s.t. ∥Φ∥0 ≤ s . (A.89)

The problem (A.89) is equivalent to

inf
Φ∈

⋃r
k=1 Sk

∥U−Φ∥2F = min
k∈{1,...,r}

inf
Φ∈Sk

∥U−Φ∥2F (A.90)

with r =
(
n·m
s

)
,

Sk = {A ∈ Rm×n : suppA ⊂ Sk},
Sk ⊂ {1, . . . ,m} × {1, . . . , n} ,#Sk = s

(A.91)

satisfying Sk ̸= Sj for k ̸= j and
⋃r

k=1 Sk = {A ∈ Rm×n :
∥A∥0 ≤ s}.

In order to solve Eq. (A.90), we minimize for each k

inf
Φ∈Sk

∥U − Φ∥2F = inf
Φ∈Sk

∑
i,j

(Ui,j − Φi,j)
2 (A.92)

individually. The problem (A.92) is minimized by Φ(k)∗

with

Φ
(k)∗
i,j =

{
Ui,j , if (i, j) ∈ Sk

0 , else
. (A.93)

Thus, the minimum of Eq. (A.92) for a k ∈ {1, . . . , r} is
given by

∥U − Φ(k)∗∥2F =
∑

(i,j)/∈Sk

U2
i,j (A.94)

Equation (A.94) leads to the solution of Eq. (A.90), given by

min
k∈{1,...,r}

∑
(i,j)/∈Sk

U2
i,j = max

k∈{1,...,r}

∑
(i,j)∈Sk

U2
i,j (A.95)

which is reached by choosing k such that Sk = TOPs(U).

xvii

Lemma 2. Let m ≤ M , then for each Φ ∈ Rm×n there
exists a F ∈ Rm×M and a R ∈ RM×n with ∥R∥0 = ∥Φ∥0
and F ·R = Φ.

Proof of Lemma 2. Let Φ = (Φi,j)i,j ∈ Rm×n be given.
Now, we define R ∈ RM×n and F ∈ Rm×M via

Ri,j =

{
Φi,j , if i ≤ m

0 , else
(A.96)

and

Fi,j =

{
1 , if i = j and j ≤ m

0 , else
. (A.97)

By construction of R and F, it holds Φ = F ·R and ∥R∥0 =
∥Φ∥0.

Corollary 3. Let m ≤M , ε(1) be the infimum of Eq. (A.83)
and ε(2) be the minimum of Eq. (A.84), respectively. Then
it holds ε(1) ≤ ε(2).

Proof of Corollary 3. By Lemma 1, Eq. (A.84) is always
minimized by a Φ∗ ∈ Rm×n. By using Lemma 2, since
m ≤ M , there exists F0 ∈ Rm×M and R0 ∈ RM×n with
Φ∗ = F0 ·R0 and ∥R0∥0 = ∥Φ∗∥0 = s. Thus, (F0, R0) is
feasible for Eq. (A.83) and consequently ε(1) ≤ ε(2).

Proof of Theorem 1. First part of proof with suppR =
suppΦ∗. W.l.o.g. we assume ε(1) = ε(2). By Corollary 3,
ε(1) ≤ ε(2) always holds. If ε(1) < ε(2), we would be
finished with the proof. Furthermore, we assume w.l.o.g.
m = M , since otherwise we just fill the corresponding
entries in Ri,j and Fk,i for index values m < i ≤ M and
arbitrary j, k with zeros.

Therefore, let ε(1) = ε(2). Let Φ∗ ∈ Rm×n solve
Eq. (A.84). Then, there exists an equivalent feasible point
(F0, R0) ∈ Rm×m × Rm×n for Eq. (A.83), constructed ac-
cording to Eqs. (A.96) and (A.97) in the proof of Lemma 2.
I.e., Φ∗ = F0 ·R0 and ∥Φ∗∥0 = ∥R0∥0. By the assumption
ε(1) = ε(2), (F0, R0) also solves Eq. (A.83). Especially, F0

defines a global minimum of the smooth, convex function

f : Rm×m → R,F 7→ ∥U − F ·R0∥2F . (A.98)

Note, minimizing f is, contrarily to Eq. (A.83), a convex
problem.

A necessary, and by convexity of f even sufficient, condi-
tion for F0 to minimize f is given by

∂f

∂F

∣∣∣∣
F=F0

= 0 ∈ Rm×m . (A.99)

It holds

∂f

∂F
=

∂

∂F
∥U−F·R0∥2F = 2·(F·R0−U)·RT

0 . (A.100)

By combining Eqs. (A.99) and (A.100), we get a necessary
condition for F0 yielding a minimum for f , given by

(U − F0 ·R0) ·RT
0 = 0 . (A.101)

Consequently, Eq. (A.101) is a necessary condition for
(F0, R0) to define the minimum for Eq. (A.83). From the
construction of F0 and R0 we know that F0 · R0 = Φ∗,
F0 = idRm and R0 = Φ∗. By Lemma 1, Φ∗ is given by
Φ∗

i,j = χ{(i,j)∈TOPs(U)} · Ui,j with the characteristic func-
tion χ{·}. Combining this with Eq. (A.101) leads to the
necessary condition

Û · ǓT = 0 (A.102)

with

Ûi,j =

{
Ui,j , if (i, j) /∈ TOPs(U)

0, if (i, j) ∈ TOPs(U)
(A.103)

and

Ǔi,j =

{
Ui,j , if (i, j) ∈ TOPs(U)

0, if (i, j) /∈ TOPs(U) .
(A.104)

In the following we will compute an upper bound δ for the
probability P(Û ·ǓT = 0). By using the fact that Û ·ǓT = 0
is a necessary condition for (F0, R0) being a minimizer to
Eq. (A.83), which is equivalent to ε(1) = ε(2), we finally get

P(ε(1) < ε(2)) = 1− P(ε(1) ≥ ε(2)) (A.105)
= 1− P(ε(1) = ε(2)) (A.106)

≥ 1− P(Û · ǓT = 0) . (A.107)

Thus, the last step is to find an upper bound δ ≥ P(Û · ǓT =
0). In order to compute δ, we have a closer look on Û · ǓT .
It holds

(Û · ǓT)i,j =

n∑
k=1

Ûi,kǓj,k (A.108)

=

{∑
k∈Ti,j

Ui,kUj,k, if Ti,j ̸= ∅
0, else

,

(A.109)

where for each (i, j) ∈ {1, . . . ,m}2,

Ti,j := {k ∈ {1, . . . , n} :(i, k) /∈ TOPs(U) and
(j, k) ∈ TOPs(U)} . (A.110)

Now assume S ⊂ ({1, . . . ,m} × {1, . . . , n})2 with S ̸= ∅
to be given, then

P(
∑

(i1,j1),(i2,j2)∈S

Ui1,j1 · Ui2,j2 = 0) = 0 . (A.111)

xviii

This equality holds since for each S ⊂ ({1, . . . ,m} ×
{1, . . . , n})2 with S ̸= ∅, ∑(i1,j1),(i2,j2)∈S Ui1,j1 · Ui2,j2

follows a continuous probability distribution.
Consequently,

P(Û · ǓT = 0) (A.112)
= P(∀(i, j) : Ti,j = ∅
∨ (Ti,j ̸= ∅ ∧

∑
k∈Ti,j

Ui,k · Uj,k = 0)) (A.113)

≤ P((∀(i, j) : Ti,j = ∅)
∨ (∃S ⊂ ({1, . . . ,m} × {1, . . . , n})2 \ ∅ :∑
(i1,j1),(i2,j2)∈S

Ui1,j1 · Ui2,j2 = 0)) (A.114)

≤ P(∀(i, j) : Ti,j = ∅)

+

 ∑
S⊂({1,...,m}×{1,...,n})2

S ̸=∅

P(
∑

(i1,j1),(i2,j2)∈S

Ui1,j1 · Ui2,j2 = 0)

 (A.115)

= P(∀(i, j) : Ti,j = ∅) , (A.116)

where the inequality (A.115) uses the subadditivity of prob-
ability measures and the final equality (A.116) is achieved
by using Eq. (A.111). By looking at the definition of Ti,j ,
we see that ∀(i, j) : Ti,j = ∅ only happens if for each
k ∈ {1, . . . , n} either

∀i ∈ {1, . . . ,m} : (i, k) ∈ TOPs(U) (A.117)

or

∀i ∈ {1, . . . ,m} : (i, k) /∈ TOPs(U) (A.118)

holds true. Otherwise, if k ∈ {1, . . . , n}, i, j ∈ {1, . . . ,m}
exist with (i, k) /∈ TOPs(U) and (j, k) ∈ TOPs(U), obvi-
ously Ti,j ̸= ∅. This shows, that ε(1) = ε(2) is only possible
in the trivial case, where each of the n filters (with m coeffi-
cients) is either completely pruned or not pruned at all.

Therefore, we need to compute the probability

P(∀k : (∀i : (i, k) ∈ TOPs(U))

∨ (∀i : (i, k) /∈ TOPs(U))) .
(A.119)

Due to the i.i.d. assumption of the Ui,k, all (i, k) have
the same probability of being in TOPs(U). Thus, de-
ciding (i, k) ∈ TOPs(U) or (i, k) /∈ TOPs(U) for all
(i, k) ∈ {1, . . . ,m} × {1, . . . , n} together can equivalently
be modeled with choosing a subset of size s from a set of
size m · n, where each subset has the same probability of
being sampled, i.e. with probability 1

(m·n
s)

.

Furthermore, Eq. (A.119) is only possible if s = α ·m
for some α ∈ N. Otherwise, there needs to exists at least one
k, i, j such that (i, k) /∈ TOPs(U) and (j, k) ∈ TOPs(U).
Assuming s = α · m for some α, there exist exactly

(
n
α

)
different choices to find α many k that satisfy ∀i : (i, k) ∈
TOPs(U) which, by the discussion above, all have similar
probability.

Altogether, the probability Eq. (A.119) is given by

δ =

0 , if s ̸≡ 0(mod m)
(n

s
m
)

(m·n
s)

, if s ≡ 0(mod m)
. (A.120)

Finally,

P(Û · ǓT = 0) ≤ P(∀(i, j) : Ti,j = ∅) (A.121)
= P(∀k : (∀i : (i, k) ∈ TOPs(U))

∨ (∀i : (i, k) /∈ TOPs(U)))
(A.122)

≤ δ . (A.123)

Using the estimation in Eq. (A.107), we finally get

P(ε(1) < ε(2)) ≥ 1− P(Û · ǓT) ≥ 1− δ , (A.124)

which finishes the first part of the proof where suppR is
fixed to be equal to suppΦ∗.

Second part of proof with arbitrary suppR. As shown
in the first part of the proof, Eq. (A.119) is a necessary
condition for ε(1) = ε(2). This means that all columns of
Φ∗ are either Φ∗

:,k = 0 ∈ Rm or ∥Φ∗
:,k∥0 = m which we

therefore will assume from now on.A.6

By assumption, 0 < s and therefore, there exists a k with
∥Φ∗

:,k∥0 = m. Now, set F̂:,1 = Φ∗
:,k and F̂:,j = (F0):,j for

all other j. Then, with P = 1, F̂ still forms a basis.
Setting R̂i,k = δi,1 for all i ∈ {1, . . . ,m} yields (F̂ ·

R̂):,k = U:,k = Φ∗
:,k. For all other j ̸= k with ∥Φ∗

:,j∥0 = m

there exists a R̂:,j with (F̂ · R̂):,j = Φ∗
:,j = U:,j since F̂

forms a basis.
Setting the remaining R̂:,j = 0 leads to F̂ · R̂ = Φ∗ and

∥R̂∥0 ≤ ∥Φ∗∥0 − (m − 1) < ∥Φ∗∥0. The last inequality
holds, since m > 1 is assumed.

Finally, one of the (at least) remaining m− 1 coefficients
which were not spend up to now can be used to better ap-
proximate one column of U which is completely zeroed in
Φ∗. Such a column j0 must fulfill U:,j0 ̸= 0 and Φ∗

:,j0
= 0.

Since s < m · n and Ui,j i.i.d. N (0, 1), such a column j0
exists with P = 1. Since F̂ forms a basis, we can find some
l, λl such that

∥U:,j0 − λlF̂:,l∥2 < ∥U:,j0∥2 . (A.125)

A.6For a matrix A ∈ Rd1×d2 , the jth column A:,j is given by (Ai,j)i ∈
Rd1 .

xix

Setting R̂l,j0 = λl leads to

∥U − F̂ · R̂∥2F =∥U − Φ∗∥2F (A.126)

− (∥U:,j0∥22 − ∥U:,j0 − λlF̂:,l∥22)
(A.127)

<∥U − Φ∗∥2F , (A.128)

which finishes the proof.

References in the Appendix
[A.1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Gregory S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian J. Goodfellow, Andrew Harp, Geoffrey Irv-
ing, Michael Isard, Yangqing Jia, Rafal Józefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Ra-
jat Monga, Sherry Moore, Derek Gordon Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul A. Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda B. Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. CoRR,
abs/1603.04467, 2016. iv

[A.2] Guillaume Bellec, David Kappel, Wolfgang Maass, and
Robert Legenstein. Deep rewiring: Training very sparse
deep networks. In International Conference on Learning
Representations, 2018. xii

[A.3] Albert Cohen, Wolfgang Dahmen, and Ronald Devore. Com-
pressed sensing and best k -term approximation. Journal of
the American Mathematical Society, 22(1):211–231, 2009.
iii

[A.4] Tim Dettmers and Luke Zettlemoyer. Sparse networks from
scratch: Faster training without losing performance. CoRR,
abs/1907.04840, 2019. xii

[A.5] D. L. Donoho. Compressed sensing. IEEE Transactions on
Information Theory, 52(4):1289–1306, 2006. iii

[A.6] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro,
and Erich Elsen. Rigging the lottery: Making all tickets win-
ners. In Proceedings of the 37th International Conference
on Machine Learning, 2020. ix, xii, xiii

[A.7] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy,
and Michael Carbin. Linear mode connectivity and the
lottery ticket hypothesis. In Proceedings of the 37th Inter-
national Conference on Machine Learning, 2020. ix, xi, xii,
xiii

[A.8] Trevor Gale, Erich Elsen, and Sara Hooker. The state of
sparsity in deep neural networks. CoRR, abs/1902.09574,
2019. ix, xiii

[A.9] Stuart Geman, Elie Bienenstock, and Rene Doursat. Neural
networks and the bias/variance dilemma. Neural Computa-
tion, 4(1):158, 1992. i

[A.10] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
SGD: training imagenet in 1 hour. CoRR, abs/1706.02677,
2017. xiii

[A.11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. In IEEE International
Conference on Computer Vision, 2015. x

[A.12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. IEEE
Conference on Computer Vision and Pattern Recognition,
2016. xiv

[A.13] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In Proceedings of the 32nd International
Conference on Machine Learning, 2015. xii

[A.14] Alex Krizhevsky. Learning multiple layers of features from
tiny images. University of Toronto, 2012. http://www.
cs.toronto.edu/˜kriz/cifar.html. xiii

[A.15] Anders Krogh and John A. Hertz. A simple weight decay
can improve generalization. In Advances in Neural Informa-
tion Processing Systems 4. 1992. i

[A.16] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H.S.
Torr. SNIP: Single-shot network pruning based on connec-
tion sensitivity. In International Conference on Learning
Representations, 2019. iii, vii, ix, xii, xiii

[A.17] Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and
Mykola Pechenizkiy. Do we actually need dense over-
parameterization? In-time over-parameterization in sparse
training. In Proceedings of the 38th International Confer-
ence on Machine Learning, 2021. xii, xiii

[A.18] Decebal Mocanu, Elena Mocanu, Peter Stone, Phuong
Nguyen, Madeleine Gibescu, and Antonio Liotta. Scalable
training of artificial neural networks with adaptive sparse
connectivity inspired by network science. Nature Communi-
cations, 9, 2018. ix, xii, xiii

[A.19] Hesham Mostafa and Xin Wang. Parameter efficient train-
ing of deep convolutional neural networks by dynamic sparse
reparameterization. In Proceedings of the 36th International
Conference on Machine Learning, 2019. xii

[A.20] NVIDIA, Pter Vingelmann, and Frank H.P. Fitzek. Cuda,
release: 10.2.89, 2020. xiii

[A.21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems 32.
2019. iv, xiii

[A.22] Alex Renda, Jonathan Frankle, and Michael Carbin. Com-
paring rewinding and fine-tuning in neural network pruning.
In International Conference on Learning Representations,
2020. ix, xiii

[A.23] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpa-
thy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,
and Li Fei-Fei. ImageNet Large Scale Visual Recogni-
tion Challenge. International Journal of Computer Vision,
115(3):211–252, 2015. xiv

xx

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

[A.24] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition. In In-
ternational Conference on Learning Representations, 2015.
iv, xiv

[A.25] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking the in-
ception architecture for computer vision. In CVPR, 2016.
xiii

[A.26] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and
Surya Ganguli. Pruning neural networks without any data by
iteratively conserving synaptic flow. In Advances in Neural
Information Processing Systems 33, 2020. vii, ix, xii, xiii

[A.27] W.F. Tinney and J.W. Walker. Direct solutions of sparse
network equations by optimally ordered triangular factoriza-
tion. Proceedings of the IEEE, 55(11):1801–1809, 1967. iii,
vii

[A.28] M. Unser and T. Blu. Mathematical properties of the
jpeg2000 wavelet filters. IEEE Transactions on Image Pro-
cessing, pages 1080–1090, 2003. iii

[A.29] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking
winning tickets before training by preserving gradient flow.
In International Conference on Learning Representations,
2020. vii, ix, x, xii, xiii

[A.30] Paul Wimmer, Jens Mehnert, and Alexandru Paul Con-
durache. FreezeNet: Full performance by reduced storage
costs. In Proceedings of the Asian Conference on Computer
Vision, 2020. iii

[A.31] Ian H. Witten, Radford M. Neal, and John G. Cleary.
Arithmetic coding for data compression. Commun. ACM,
30(6):520540, 1987. iv

xxi

	. Structure of the Appendix
	. Additional ablations
	. Using different initializations for the interspace.
	. Top-5 accuracy for PaI on ImageNet
	. Impact of weight decay.
	. Similarity of filter bases
	. Layer wise pruning rates for PaI
	. Generalizing filter bases
	. Freezing coefficients

	. Storing unstructured sparse networks
	. Comparing computational costs for convolutions with spatial and interspace representations
	. Computations in the forward pass
	Standard convolution.
	FB convolution
	Pruned networks

	. Backward Pass
	Computing the gradient for X.
	Gradients for coefficients.
	Gradient for the filter base.
	Summary for the backward pass.

	. Upper bounds for gradients.
	. Real runtime measurements

	. Transformation rules in the interspace
	. Transformation rules for filters
	. Transformation rules for gradients
	. Transformation rules for Hessian

	. Computation of pruning scores
	. Pruning scores in general
	. Random
	. Magnitude
	. SynFlow
	. SNIP
	. GraSP

	. Pruning methods and initialization of the interspace
	Derivation of rescaling in Algorithm A3
	. General setup
	. Lottery tickets with resetting coefficients
	. Dynamic sparse training
	. Pruning at initialization
	. Gradual Magnitude Pruning
	. Fine tuning

	. Experimental setup
	. Network architectures
	. Proof of Theorem 1

