
A. Appendix
A.1. Network architectures and training parame-

ters

The structure of the U-Net embedding network used
for each dataset is described using the buliding block
shown in Figure 1. The number of ConvBlocks in the en-
coder/decoder part of U-Net is chosen such that the recep-
tive field of features in the last encoder layer is equal to or
slightly bigger than the input size. We used group normal-
ization [14] for 3D and electron microscopy experiments
and batch normalization for CVPPP and Cityscapes datasets
[6].

In the tables describing the architecture: second number
after the comma corresponds the number of output chan-
nels from each layer, Upsample denotes nearest-neighbor
upsampling and Concat denotes channel-wise concatena-
tion of the output for a given decoder layer with the output
from the corresponding encoder layer.

Unless otherwise specified, Adam optimizer [7] with an
initial learning rate of 0.0002, weight decay 10−5, β1 = 0.9
and β2 = 0.999 was used for training. Learning rate was
reduced by a factor of 0.2 when the validation loss stopped
improving after a dataset-dependent number of iterations.
Training was stopped when the learning rate dropped below
10−6 or maximum number of iterations was reached. In all
our experiments we use 16-dimensional embedding space,
i.e. the output from the U-Net after the last 1×1 convolution
has 16 channels. Input images were globally normalized
to zero mean and a standard deviation of one unless stated
otherwise.

Figure 1. ConvBlock architecture. We use ConvBlock, Con-
vBlockBN or ConvBlockGN to refer to the block where no, batch
or group normalization is used respectively.

CVPPP. Table 1 shows the 2D U-Net architecture used
in the experiment. All networks were trained for up to
80K iterations (unless the stopping criteria was not sat-
isfied before) with a minibatch size of 4. Input images
were randomly scaled, flipped horizontally and vertically
and cropped to 448×448 pixels. Before passing to f(·) and
g(·) networks, random color jitter and Gaussian blur were

applied.

3-channel image x ∈ RM×N×3

ConvBlockBN, 16, MaxPool 2×2
ConvBlockBN, 32, MaxPool 2×2
ConvBlockBN, 64, MaxPool 2×2
ConvBlockBN, 128, MaxPool 2×2
ConvBlockBN, 256, MaxPool 2×2
ConvBlockBN, 512, Upsample 2×2

Concat, 256 + 512
ConvBlockBN, 256, Upsample 2×2

Concat, 128 + 256
ConvBlockBN, 128, Upsample 2×2

Concat, 64 + 128
ConvBlockBN, 64, Upsample 2×2

Concat, 32 + 64
ConvBlockBN, 32, Upsample 2×2

Concat, 16 + 32
ConvBlockBN, 16, conv 1×1, d

Table 1. U-Net architecture for CVPPP and Cityscapes datasets.
(M,N) = (448, 448), d = 16 for CVPPP and (M,N) =
(384, 768), d = 8 for Cityscapes.

Cityscapes. See Table 1 for an overview of 2D U-Net ar-
chitecture for the Cityscapes semantic instance segmenta-
tion task. All networks were trained for up to 90K itera-
tions with a minibatch size of 16. The network output di-
mension was set to 8. Input images were randomly cropped
to 358×768 patches. Random flipping and scaling (ratio in
[0.5, 2.0]), Gaussian blurring, color jitter and random con-
version to grayscale was applied to the input before passing
it to f(·) and g(·) networks.

Light microscopy datasets. 3D U-Net architecture used
for the light microscopy datasets is shown in Table 2.
Ovules networks were trained for up to 200K iterations
(or until the stopping criteria was satisfied) with a mini-
batch size of 8. Stem networks were fine-tuned with a
fixed, reduced learning rate of 0.00002 for 100K iterations.
3D patches of shape 40×64×64 (ZYX axes ordering) were
used. Patches were augmented with random rotations, flips
and elastic deformations. Gaussian noise was added to the
input before passing through f(·) and g(·) networks.
For a fair comparison with other methods we do not stitch
the patches to recover the whole volume, but evaluate on the
patch-by-patch basis.

Electron microscopy datasets. 2D U-Net architecture
for the VNC and MitoEM datasets is shown in Table 3.
The source VNC network was trained for up to 100K it-
erations with a minibatch size of 4. MitoEM networks were

1-channel 3D patch x ∈ RK×M×M×1

ConvBlockGN, 64, MaxPool 2×2
ConvBlockGN, 128, MaxPool 2×2
ConvBlockGN, 256, MaxPool 2×2
ConvBlockGN, 512, Upsample 2×2

Concat, 256 + 512
ConvBlockGN, 256, Upsample 2×2

Concat, 128 + 256
ConvBlockGN, 128, Upsample 2×2

Concat, 64 + 128
ConvBlockGN, 64, conv 1×1, d = 16

Table 2. U-Net architecture for Ovules and Stem datasets, K =
40,M = 64. All convolutions and max pooling operations are
3D.

1-channel image x ∈ RM×M×1

ConvBlockGN, 16, MaxPool 2×2
ConvBlockGN, 32, MaxPool 2×2
ConvBlockGN, 64, MaxPool 2×2
ConvBlockGN, 128, MaxPool 2×2
ConvBlockGN, 256, MaxPool 2×2
ConvBlockGN, 512, MaxPool 2×2

ConvBlockGN, 1024, Upsample 2×2
Concat, 512 + 1024

ConvBlockGN, 512, Upsample 2×2
Concat, 256 + 512

ConvBlockGN, 256, Upsample 2×2
Concat, 128 + 256

ConvBlockGN, 128, Upsample 2×2
Concat, 64 + 128

ConvBlockGN, 64, Upsample 2×2
Concat, 32 + 64

ConvBlockGN, 32, Upsample 2×2
Concat, 16 + 32

ConvBlockGN, 16, conv 1×1, d = 16

Table 3. U-Net architecture for VNC and MitoEM datasets, M =
448.

fine-tuned with a fixed, reduced learning rate of 0.00002 for
100K iterations. 2D patches of shape 448×448 were used.
Patches were augmented with random rotations, flips and
elastic deformations. Gaussian noise was added to the input
before passing through f(·) and g(·) networks.

Adversarial training. As mentioned in Sec.3.1 our ap-
proach can be used for adversarial training, where the pixel
embedding network is a generator of object masks, which
the discriminator learns to distinguish from the ground truth
object segmentation masks. In this case the embedding net-

work (generator) is trained with the following objective:

Ladv = LSO + λLwgan (1)

with LSO defined in Eq. 5. For adversarial training we use
Wasserstein GAN with gradient penalty (WGAN-GP) [4]
objective function given by:

VD(G,D) = Ex̃∼Pg
[D(x̃)]− Ex∼Pr

[D(x)]

+ λEx̂∼Px̂
[(∥∇x̂D(x̂)∥−1)2]

(2)

Lwgan = VG(G,D) = −Ex̃∼Pg [D(x̃)] (3)

for the critic and the embedding network (generator) re-
spectively. Pr is the distribution of ground truth mask,
Pg is the distribution of predicted ”soft” masks and Px̂

is the sampling distribution. Table 4 shows the architec-
ture of the critic used in the Ovules dataset experiments.
Our final objective for the embedding netowrk is given by:
LSO + ζLwgan or LSSO + ζLwgan depending on whether
full or sparse supervision is used. Training of the embed-
ding network and the critic is done using the Adam opti-
mizer with β1 = 0.5, β2 = 0.9 and initial learning rate of
0.0001 for both networks. We use ncritic = 5 iterations per
each iteration of the embedding network. We use λ = 10
(GP weight) and ζ = 0.1 (Lwgan weight) in our experi-
ments. In order to prevent uninformative gradients from the
critic at the beginning of the training process, Lwgan is en-
abled after the warm-up period of 50K iterations.

In our experiments, adversarial training does not by it-
self bring a significant performance improvement over the
Dice-based loss. Both losses can also be used in combina-
tion which can be beneficial: as we show in Table 3, the
combined loss outperforms a much more complex 3-step
state-of-the-art segmentation pipeline. This finding is sim-
ilar to [10] where authors use an adversarial approach to
train a semantic segmentation model. Our approach differs,
as in our setup the discriminator focuses more on the indi-
vidual object properties instead of the global statistics of the
semantic mask predicted by the network.

1-channel image x ∈ [0, 1]K×M×M×1

ConvBlock, 64, MaxPool 2×2
ConvBlock, 128, MaxPool 2×2
ConvBlock, 256, MaxPool 2×2
ConvBlock, 512, Upsample 2×2

dense layer, 1

Table 4. WGAN-GP critic architecture used in the adversarial set-
ting on Ovules dataset, K = 40,M = 64. All convolutions and
max pooling operations are 3D. No batch or group normalization
was used. ReLU was replaced by leaky ReLU activation function
with α = 10−2.

A.2. Ablation study of loss functions

In this section, we study the impact of different loss vari-
ants and the choice of g(·) network on the final performance
of our method. Table 5 presents segmentation and counting
scores (CVPPP test set) with different loss variants. HDB-
SCAN with min size = 200 and no foreground mask was
used for clustering the network outputs in all cases. We
see that when only a few ground truth objects are used for
training (10%, 40%) the consistency term LU con (Eq. 7)
has a much stronger impact on the final segmentation per-
formance than the unlabeled ”push” term LU push (Eq. 6).
The absence of LU push term worsens the segmentation and
counting scores in all experiments.

Loss function SBD |DiC|
@0.1 0.788 ± 0.017 5.4 ± 0.3
@0.1 w/o LU push 0.734 ± 0.042 8.5 ± 0.4
@0.1 w/o LU con 0.720 ± 0.037 6.3 ± 0.1
@0.4 0.824 ± 0.003 3.2 ± 0.5
@0.4 w/o LU push 0.779 ± 0.045 3.0 ± 0.7
@0.4 w/o LU con 0.738 ± 0.019 2.1 ± 0.1
@0.8 0.828 ± 0.010 1.6 ± 0.2
@0.8 w/o LU push 0.797 ± 0.014 1.9 ± 0.4
@0.8 w/o LU con 0.810 ± 0.010 2.1 ± 0.2

Table 5. Ablation study of different loss variants. We report seg-
mentation (SBD) and counting (|DiC|) scores on the CVPPP test
set. Ablation of the LU con LU push term in the semi-supervised
setting is reported for 10%, 40% and 80% of randomly selected
ground truth objects. Mean ± SD are reported across 3 random
samplings of the ground truth objects.

To finalize the ablation study, we trained the network in a
fully-supervised setting using the consistency regularization
from the weakly-supervised setup. Tab 6 shows the compar-
ison between all four variants. Using the consistency term
LU con together with the instance-based term Lobj on the
Cityscapes validation set gives the highest mAP@0.5 score
of 0.459 as compared to 0.387 (discriminative loss [1]),
0.418 ([1] + Lobj) and 0.429 ([1] + LU con). For CVPPP
the SBD metric on the validation set improves from 0.847
(full supervision as in [1]) to 0.852 ([1] + Lobj), to 0.853
([1] + Lobj) and to 0.849 ([1] + Lobj + LU con).

Loss function CVPPP Cityscapes
DL [1] 0.847 0.387
DL + Lobj 0.852 0.418
DL + LU con 0.853 0.429
DL + Lobj + LU con 0.849 0.459

Table 6. Weakly-supervised regularization in the fully-supervised
setting. SBD (CVPPP datasets) and mAP@0.5 (Cityscapes
dataset) computed on the validation sets.

A.3. g-network ablations

We experiment with different types of the g network used
in the consistency loss to better understand its effect. Apart
from the momentum g described in Sec. 3.2 we consider
three other variants: (1) weights are shared between f and
g, i.e. θg = θf , (2) g shares the weights with f , but uses
spatial dropout [11] in the bottleneck layer of the U-Net ar-
chitecture, (3) g uses independent set of weights trained by
back-propagation.
For the purpose of this ablation, we split the CVPPP A1
training set into 103 randomly selected images used for
training and report the results on the remaining 25 images.

Table 7 shows the segmentation and counting scores for
the HDBSCAN-clustered embeddings together with train-
ing dynamics for different variants of g. ”Dropout” vari-
ant shows a good initial convergence rate, but overfits
quickly and has the worse final performance. ”Trained” and
”shared” variants show comparable average scores, how-
ever the variance is much larger for the ”trained”, which
is prone to training instabilities. ”Momentum” outperforms
the others by a large margin and has the fastest convergence
speed. Figure 2 shows the PCA-projected netork outputs
for two randomly selected CVPPP images (test set) and five
different settings. One can see that sparse training without
the consistency loss (column 2) fails to separate the back-
ground. Using dropout g leads to artifacts in the unlabeled
region. ”Shared” and ”trained” variants of g (columns 4 and
5) provide limited background separation, but fail to pro-
duce crisp embeddings. The ”momentum” variant (column
6) is able to correctly separate the background.

Figure 2. Qualitative comparison of the PCA-projected outputs
from the network f for different training setups: (col 2) no consis-
tency term, (col 3) dropout g, (col 4) shared g, (col 5) trained g,
(col 6) momentum g. Two images from the CVPPP test set were
randomly selected. SPOCO@0.1 was used for training.

In transfer learning setting, the embedding network
trained on the source domain is fine-tuned on the target do-
main with just a few groundtruth objects. Results on the EM
data, where VNC dataset [3] is the source and the MitoEM
[12] is the target domain (Tab 8) show significant drop in
segmentation scores across all experiments if the embed-
ding consistency is removed from the loss.

g-network SBD |DiC|
Shared 0.602 ± 0.016 6.0 ± 0.6
Dropout 0.507 ± 0.060 7.9 ± 0.9
Trained 0.591 ± 0.131 5.7 ± 2.0
Momentum 0.649 ± 0.045 4.5 ± 1.6

Table 7. (Top) Segmentation performance computed for different
types of g-network on the CVPPP validation set. (Bottom) Com-
parison between g-network variants during training. SPOCO@0.1
used for training, mean ± SD across 3 random samplings of the
groundtruth objects is shown.

Method AP@0.5 mAP
@0.01 0.368 ± 0.022 0.247 ± 0.022
@0.01 w/o LU con 0.306 ± 0.014 0.210 ± 0.008
@0.05 0.398 ± 0.007 0.277 ± 0.006
@0.05 w/o LU con 0.319 ± 0.002 0.227 ± 0.002
@0.10 0.389 ± 0.013 0.268 ± 0.007
@0.10 w/o LU con 0.301 ± 0.012 0.212 ± 0.007

Table 8. Ablation of the consistency term LU con in the transfer
learning setting with 1%, 5%, 10% of groundtruth objects (target
domain). Average precision measured on the target task of Mi-
toEM mitochondria segmentation is reported. VNC dataset serves
as a source domain. Mean ± SD are reported across 3 random
samplings of the instances from the target dataset.

A.4. Comparison of clustering algorithms

Apart from the standard mean-shift and HDBSCAN, we
introduce two additional clustering methods: (1) a hybrid
scheme called consistency clustering and (2) a fast affinity
graph partitioning. Consistency clustering (Algorithm 1)
works by passing two augmented versions of the input
through the networks f and g, producing embeddings Ef
and Eg respectively. We cluster Ef using mean-shift with
bandwidth set to the pull force margin δv . Then for each
segmented object Sk, we randomly select M anchor points
and for each anchor we extract a new object Ŝm

k by taking
a δv-neighborhood around the anchor in the Eg space. If the
median intersection-over-union (IoU) between Sk and each
of the Ŝm

k objects is lower than a predefined threshold, we

discard Sk from the final segmentation. This is based on
the premise that clusters corresponding to the real objects
should remain consistent between Ef and Eg .

Algorithm 1: Consistency clustering
Input: Set of mean-shift segmented objects S,

embeddings from the g-network
Eg = {e0, e1, ..., eN}, IoU threshold tIoU ,
number of anchors per object to sample M

Output: New set of segmented objects Ŝ
Ŝ = {};
for Sk ∈ S do

Ak = {a1
k, ...,a

M
k | am

k ∈ Eg} - anchors of Sk;
IIoU = {};
for am

k ∈ Ak do
Ŝm
k = {si | si = ∥ei − am

k ∥ < δv};
IIoU ∪ IoU(Ŝm

k , Sk);

if med(IIoU) > tIoU then
Ŝ = Ŝ ∪ {Sk};

return Ŝ;

The affinity graph-based method proceeds similar to [8]:
we convert the embedding space into a graph partitioning
problem by introducing a grid-graph that contains a node
for each pixel and connects all direct neighbor pixel via
edges. Following [9] and [13] we introduce additional long-
range edges that connect pixels that are not direct neighbors
in a fixed offset pattern. Following [8] we derive the edge
weight wij , or affinity, between pixel i and j from the em-
bedding vector ei and ej via

wij = 1− max(
2δd − ∥ei − ej∥

2δd
, 0)2. (4)

Here, δd is the hinge from Eq. 2 and we use the L2 norm to
measure the distance in the embedding space. This weight
is derived from the distance term (Eq. 2) and is maximally
attractive (0) when the embedding distance is zero and be-
comes maximally repulsive (1) for embedding distances
larger than 2δd. We obtain an instance segmentation with
the Mutex Watershed algorithm [13], which operates on
long-range affinity graphs. We introduce long-range edges
between all pixel pairs with distance 3, 9 and 27 across all
dimensions. This choice yields good segmentation results
empirically; potentially we could obtain even better results
with this approach by determining the offset pattern via grid
search.

Quantitative comparison of 4 different clustering algo-
rithms: HDBSCAN (min size = 200), Mean-shift (with
bandwidth set to δv = 0.5), Consistency Clustering (tIoU =
0.6) and affinity-based clustering are shown in Table 9. We
report the segmentation and counting scores as well as run-
times on the CVPPP validation set. We used the embedding

networks trained using SPOCO@0.1 (i.e. 10% of randomly
selected ground truth objects) and SPOCO (trained with full
supervision).

Mean-shift has a high recall (correctly recovers most in-
stances), but low precision (it tends to over-segment the im-
age around the boundary of the objects, see Fig 3) result-
ing in high number of false positives and inferior count-
ing scores. Consistency clustering significantly improves
the initial mean-shift segmentation resulting in the best seg-
mentation metric for the network trained with weak su-
pervision (SPOCO@0.1). Affinity-based (Mutex Water-
shed) and density-based (HDBSCAN) methods have similar
segmentation scores, with the former achieving much bet-
ter counting performance in both full (SPOCO) and weak
(SPOCO@0.1) supervision. The affinity-based approach
has much lower runtimes compared to the other clustering
methods.

Method (CVPPP) SBD |DiC| t [s]
SPOCO@0.1
Consistency 0.729 ± 0.086 2.7 ± 1.7 252.3
HDBSCAN 0.653 ± 0.077 5.7 ± 1.7 82.3
Mean-shift 0.356 ± 0.048 20.7 ± 6.2 201.2
Affinity-based 0.615 ± 0.061 2.6 ± 2.3 0.45
SPOCO
HDBSCAN 0.834 1.6 164.7
Mean-shift 0.541 10.92 121.9
Affinity-based 0.833 0.88 0.4

Table 9. Performance and runtime comparison of the clustering
methods on the CVPPP validation set. We compare the results for
SPOCO@0.1, where mean ± SD are reported across 3 random
samplings of the ground truth objects as well as fully supervised
SPOCO (bottom), for which we report results from a single train-
ing.

Method (Ovules) Arand error t [s]
HDBSCAN 0.133 95.036
Mean-shift 0.102 279.202
Affinity-based 0.086 0.955

Table 10. Performance (Adapted Rand Error) and runtime compar-
ison of the clustering methods on the ovules test set. Embedding
network trained with fully supervised SPOCO.

Similarly, Table 10 shows comparison of 3 clustering
algorithms: HDBSCAN (min size = 600), Mean-shift
(bandwidth = δv) and affinity-based on the Ovules test set.
We skip the consistency clustering, since the embedding
network is trained in the full supervision setting. We no-
tice that for the dense tissue segmentation problems, HDB-
SCAN classifies the low density areas between the cells as
noise, and additional post-processing is required in order to
fill the empty space. Results reported in Tab 3 and Fig 5

are based on the watershed post-processing. Here, for fair
comparison with other methods we don’t use the watershed
post-processing on the HDBSCAN clustering results (see
Fig 5 bottom). Overall, the parameter-free, affinity-based
clustering is much faster (3 orders of magnitude faster) than
other methods under consideration and provides the best
performance-runtime ratio. The downside of HDBSCAN
is its sensitivity to the min size hyperparameter, longer run-
ning times and the need for additional post-processing for
dense tissue segmentation problems.

Qualitative results on samples from the CVPPP and
Ovules datasets are illustrated in Figure 3.

A.5. Training with limited annotation budget

Choosing a fixed annotation budget of N ground truth
instances we can objectively compare the weakly super-
vised training with the dense, fully supervised one. We
set N = 16, which corresponds to roughly 1% of the ob-
jects from the CVPPP training set containing 1683 objects
spread across 103 files (we use train/val script described in
Sec A.3). In the dense setup we randomly choose a single
groundtruth file with 16 objects and dense labeling (includ-
ing the background label), whereas in the sparse setting we
randomly sample 16 objects from the whole training set, re-
sulting in 16 files, each with only one object labeled. We
train fully supervised SPOCO using the densely labeled im-
age and weakly supervised SPOCO using the sparsely la-
beled images.

Segmentation metrics and embeddings emerging the two
training schemes are shown in Tab 11. The network trained
from dense annotations is prone to over-fitting and result
in visible artifacts in the embedding space. On the other
hand, exposing the network to a much more varied training
set in the sparse setting and the presence of a strong con-
sistency regularizer results in a feature space of much better
quality. Quantitative comparison confirms that the sparse
significantly outperforms the dense setting in terms of seg-
mentation and counting scores.

A.6. Momentum coefficient (m) exploration

In this experiment, we explore the effect of the momen-
tum coefficient m used in the momentum update of the g-
network parameters (see Sec. 3.2). We use the train/val split
of the CVPPP training set described in Sec. A.3. Simi-
lar to [5] we show in Table 12 that the large momentum
(m = 0.999) performs best. We hypothesize that using
slowly moving g moving acts as a strong regularizer which
prevents the embedding network f to adapt too quickly to
the spare ground truth signal.

A.7. Kernel threshold (t) exploration

Figure 4 illustrates the effect of the kernel threshold pa-
rameter t (Eq. 3 in Sec. 3.1) on the SPOCO model perfor-

Figure 3. Qualitative comparison of different clustering schemes on the samples from the (top) CVPPP validation set and (bottom) Ovules
test set. Fully supervised SPOCO was used to train embeddings.

mance. Choosing a large value (e.g. t = 0.9) leads to
a crisper, more separable embeddings than smaller values
(e.g. t ∈ {0.25, 0.5, 0.75}). The difference in the final seg-
mentation performance between a small and a large value
of t is especially apparent in the sparse annotation regime.
Indeed, when training with only 10% (SPOCO@0.1) or

40% (SPOCO@0.4) of ground truth objects, the mean SBD
score improvement between t = 0.5 and t = 0.9 is 0.044
and 0.054 respectively. Although the performance gain is
less pronounced when more supervision is provided (for
SPOCO@0.8 the mean SBD reaches a plateau for t ≥ 0.5),
models trained with higher values of t are more robust as

Training scheme SBD |DiC|
1% dense 0.380 9.8
1% sparse 0.691 2.2

Table 11. (Top) Segmentation performance computed for the net-
works trained with limited annotation budget on the CVPPP vali-
dation set. Embeddings within the foreground semantic mask were
clustered with mean-shift algorithm. (Bottom) Qualitative com-
parison of the embeddings trained in the dense and sparse setting.
Four sample images where chosen from the CVPPP validation set.

Momentum coefficient SBD |DiC|
0.99 0.615 ± 0.042 5.2 ± 0.8
0.995 0.622 ± 0.116 5.4 ± 0.7
0.999 0.649 ± 0.045 4.5 ± 1.6

Table 12. The effect of the momentum coefficient value m on
the SPOCO performance. (top) Segmentation and counting
scores. (bottom) Evolution of the validation score during train-
ing. SPOCO@01 was used for training. Mean ± SD across 3
random samplings of the ground truth objects is shown.

shown by the low variance of the SBD score.
In our experiments, values of t greater than 0.95 lead to
training instabilities.

Figure 4. Effect of the kernel threshold t on the segmenta-
tion performance at different ground truth objects sampling rates
(0.1, 0.4, 0.8). SBD scores measured on the CVPPP valida-
tion set are shown for models trained with four values of t:
0.25, 0.5, 0.75, 0.9. Mean ± SD are reported across 3 training
runs for each (sampling rate, kernel threshold) pair. HDBSCAN
(min size = 200) is used for clustering.

A.8. Cityscapes results

In Tab 13 we compare two different training setups at
different object sampling ratios for the Cityscapes dataset:
(1) single-class reported in the main text, where embedding
network is trained separately on each semantic class and (2)
class-agnostic where all objects from all classes are used
to train a single embedding network. The class-agnostic
training consistently outperforms the ’single-class’ setup for
instances of ’rider’, ’car’, ’motorcycle’ and ’bicycle’ cate-
gories at all sampling levels. The ’single-class’ training is
better for objects from ’truck’, ’bus, and ’train’ categories.
We hypothesize that the class-agnostic setup learns better
representation of objects from correlated classes (e.g. ’per-
son’ and ’rider’, ’motorcycle’ and ’bicycle’), but it is detri-
mental to trucks, buses and trains due to heavy class im-
balance. A per-class weighting of the instance-based term
could be beneficial in the class agnostic setting, which we
leave for future work.

Additional qualitative results for the weakly-supervised
network (SPOCO@0.4) on the Cityscapes validation set
can be found in Fig 5. Apart from the segmentation re-
sults, we also show the embeddings leaned by the network
trained on objects from a given semantic class. For un-
derrepresented classes such as ’motorcycle’, ’train’, ’truck’
the final segmentation strongly relies on the segmentation
mask given by the pre-trained semantic segmentation model
(DeepLabV3 [2]).

References
[1] B. D. Brabandere, D. Neven, and L. V. Gool. Semantic

instance segmentation with a discriminative loss function,

Method person rider car truck bus train motorcycle bicycle average
single-class@0.1 0.190 0.360 0.236 0.438 0.481 0.490 0.424 0.204 0.353

class-agnostic@0.1 0.197 0.430 0.282 0.243 0.276 0.167 0.468 0.261 0.291
single-class@0.4 0.230 0.396 0.301 0.558 0.601 0.594 0.405 0.214 0.412

class-agnostic@0.4 0.207 0.459 0.332 0.260 0.336 0.223 0.471 0.266 0.319
single-class@1.0 0.260 0.451 0.331 0.604 0.637 0.656 0.464 0.266 0.459

class-agnostic@1.0 0.259 0.463 0.410 0.370 0.395 0.378 0.478 0.296 0.381

Table 13. Comparison of SPOCO trained in a single-class vs class-agnostic settings at different sampling ratios. Shown are mAP@0.5
scores computed on the Cityscapes validation set.

2017.
[2] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.

Encoder-decoder with atrous separable convolution for se-
mantic image segmentation. In Proceedings of the European
Conference on Computer Vision (ECCV), September 2018.

[3] S. Gerhard, J. Funke, J. Martel, A. Cardona, and R. Fetter.
Segmented anisotropic sstem dataset of neural tissue, 2013.

[4] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. C. Courville. Improved training of wasserstein gans. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

[5] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momen-
tum contrast for unsupervised visual representation learning.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020.

[6] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In F. Bach and D. Blei, editors, Proceedings of the 32nd In-
ternational Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages 448–456,
Lille, France, 07–09 Jul 2015. PMLR.

[7] D. P. Kingma and J. Ba. Adam: A method for stochastic op-
timization. In Y. Bengio and Y. LeCun, editors, 3rd Interna-
tional Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Pro-
ceedings, 2015.

[8] K. Lee, R. Lu, K. Luther, and H. S. Seung. Learning and seg-
menting dense voxel embeddings for 3d neuron reconstruc-
tion. IEEE Transactions on Medical Imaging, pages 1–1,
2021.

[9] K. Lee, J. Zung, P. Li, V. Jain, and H. S. Seung. Superhu-
man accuracy on the snemi3d connectomics challenge. arXiv
preprint arXiv:1706.00120, 2017.

[10] P. Luc, C. Couprie, S. Chintala, and J. Verbeek. Semantic
segmentation using adversarial networks, 2016.

[11] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bre-
gler. Efficient object localization using convolutional net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2015.

[12] D. Wei, Z. Lin, D. Barranco, N. Wendt, X. Liu, W. Yin,
X. Huang, A. Gupta, W. Jang, X. Wang, I. Arganda-Carreras,
J. Lichtman, and H. Pfister. Mitoem dataset: Large-scale
3d mitochondria instance segmentation from em images. In

International Conference on Medical Image Computing and
Computer Assisted Intervention, 2020.

[13] S. Wolf, C. Pape, A. Bailoni, N. Rahaman, A. Kreshuk,
U. Köthe, and F. A. Hamprecht. The mutex watershed:
Efficient, parameter-free image partitioning. In V. Ferrari,
M. Hebert, C. Sminchisescu, and Y. Weiss, editors, Com-
puter Vision – ECCV 2018, pages 571–587, Cham, 2018.
Springer International Publishing.

[14] Y. Wu and K. He. Group normalization. In Proceedings
of the European Conference on Computer Vision (ECCV),
September 2018.

Figure 5. Qualitative results for different semantic classes on the Cityscapes validation set.

