
Multi-View Mesh Reconstruction with Neural Deferred Shading
Supplementary Material

Markus Worchel1,2* Rodrigo Diaz1,3* Weiwen Hu1

Oliver Schreer1 Ingo Feldmann1 Peter Eisert1,4

1Fraunhofer HHI 2TU Berlin 3Queen Mary University of London 4HU Berlin

1. Ethical Considerations
Our method has the same potential for misuse as other

multi-view 3D reconstruction pipelines. For example, it
could be used to digitally reconstruct dangerous objects
(e.g. weapons, weapons parts, ammunition) for reproduc-
tion in 3D printing.

Because we also train an appearance model, a malicious
actor could potentially modify or edit materials of a recon-
structed scene, for example to create fakes by modifying the
skin color of a person.

With publicly available code, means for mitigation
would be difficult to implement from our side. However,
we feel that the overall potential for misuse is low and there
are few obvious paths to malicious use or potential damage.
Also, our method requires a set of calibrated images, thus is
much less accessible than 3D reconstruction or deep fakes
based on single images.

2. Dataset Details
2.1. DTU MVS Dataset

Our evaluation is based on the scripts included in the of-
ficial DTU MVS dataset release [5]. In our experiments, we
use a derived dataset [23] that includes object masks and
was assembled in the context of prior work [14, 25]. Our
implementation expects the input in a different file structure
and we will release the converted dataset with our paper.

We are not aware of any copyright or license attached to
the DTU dataset. This dataset is widely used in the scientific
community.

2.2. Human Body Dataset

The human body dataset used in the mesh refinement ex-
periments consist of recordings of two persons, taken in a
volumetric capture studio [19]. The subjects are hired ac-
tors and they consented in writing to be recorded and to

*Equal contribution

their data being used for research purposes. The consent
covers showing the subjects’ faces in publications.

3. Implementation Details

Grid Remaining points Marching cubes mesh

Figure 1. Construction of the initial visual hull mesh for 3D re-
construction.

Our implementation is built on top of the automatic dif-
ferentiation framework PyTorch [15] and includes code re-
leased in the context of previous publications [9,13,16,22].
For remeshing we use a library with Python bindings [21];
for differentiable rasterization we use the high-performance
primitives by Laine et al. [12]. Additionally, we rely on a
variety of other libraries [1–4, 6–8, 10, 11].

In our implementation, we do not assume normalized
camera positions. However, we require a rectangular
bounding box to normalize the domain to a cube centered
at (0, 0, 0) with side length 2.

For 3D reconstruction, we also use the bounding box to
construct the initial mesh (Figure 1): we place a grid of
points (32× 32× 32) inside the bounding box volume and
project the points into each camera image. If a point lies
outside any image or mask region, it is removed. We re-
construct a mesh surface from the remaining points with
marching cubes.

1



Table 1. Full hierarchical runtime decomposition of our method
for DTU scan 122 (“Owl”) with 2000 iterations. Invocations of
the neural shader are included in the shading term. Some one-
time operations before to the optimization loop are not explicitly
listed (e.g. initialization of the neural network, optimizers, and the
rasterizer). In this experiment, we pre-computed the initial mesh.
Computing the visual hull takes roughly 0.5 seconds.

Operation Time [s]

Total 341.03↰

Reading data 20.54↰

Images 20.50
Mesh 0.04

Optimization loop 312.16↰

Applying vertex offsets 2.26
Sampling views 0.63
Creating g-buffers 11.49↰

Rasterization 6.86
Interpolating coverage 1.50
Interpolating positions 1.45
Interpolating normals 1.43

Computing objective function 135.63↰

Silhouette 0.73
Shading 128.50
Laplacian 3.58
Normal consistency 1.37
Aggregating terms 1.24

Computing gradients 129.12
Performing descent step 5.79
Remeshing 23.28

4. Experiment Details

Optimization. In the 3D reconstruction experiments, we
set the gradient descent step size to 10−3 for both the mesh
vertices and the neural shader. For mesh refinement, we
use a step size of 10−4 for the vertices and 2 · 10−3 for the
shader, progressing the shader faster than the mesh.

Reconstruction Baselines. For COLMAP [17,18], we use
the official release 3.6 with CUDA support [20]. Similar
to prior work [14], we clean the dense point clouds with
masks. We also perform trimming after the screened Pois-
son surface reconstruction (“trim7”).

For IDR [25], we use the official implementation [24]
and run the reconstruction experiments with camera train-
ing, using the dtu trained cameras.conf configu-
ration.

Runtime Decomposition. In the main work, we compare
the runtime of one gradient descent iteration of our method
to the one of IDR [25]. The comparison uses data pro-

duced by an extensive profiling mode that we implemented
for our method and a simpler mode implemented on top
of IDR. When profiling, we disable all intermediate out-
puts (e.g. visualizations). In the case of IDR, we profile
calls to RayTracing.forward and inside these calls
those to ImplicitNetwork.forward, obtaining mea-
surements for Geometry rendering and SDF evaluation, re-
spectively.

For our method, we record the runtime of most opera-
tions during reconstruction. Table 1 shows the full decom-
position for one sample from the DTU dataset. Computing
the shading term of our objective function and computing
the gradients with back propagation are the main bottle-
necks of our method.

5. Additional Experimental Results

6.43 min 7.82 min 8.90 min 6.96 min

In
iti

al

540 faces 2552 faces 11366 faces 2048 faces

Fi
na

l

31106 faces 141278 faces 604146 faces 124242 faces

VH 163 VH 323 (Ours) VH 643 Sphere

Figure 2. Reconstruction results for different initial meshes. We
vary the resolution of the grid used to build the visual hull (VH)
and also start from a sphere.

Ablation Study of Initial Mesh. We investigate how ini-
tial meshes with different resolutions, topology, and geo-
metric distance to the target affect the reconstruction (Fig-
ure 2). Very coarse initial meshes result in missing details,
while fine meshes provide too much geometric freedom,
which leads to artifacts. Since we do not support topology
changes, holes are only reconstructed if they are present in
the initial geometry.

The initial meshes for all DTU objects consist of around
2000 triangles and the output meshes of around 100000 tri-
angles. In terms of scalability, our method handles high-
resolution meshes efficiently: in the last 500 iterations (with
2000 iterations in total), the optimization runs on a mesh
with the output resolution and still performs fast gradient
descent steps.

Ablation Study of Objective Function. We investigate
the influence of the individual terms of our objective func-
tion (Figure 3). Without the Laplacian term, we observe



No Laplacian term No normal term No silhouette term No shading term Ours

Figure 3. Ablation study of the objective function.

3× 256 1× 256 8× 256

(Ours)

16× 256 3× 32 3× 512

Figure 4. Different sizes of the positional part of the neural shader (number of layers × width of layers).

noticeable bumps and crack-like artifacts. The normal
term has a small influence but improves smoothness around
edges. Without the silhouette term, the object boundaries
are not properly reconstructed. Without the shading term,
the reconstructed shape resembles a smooth visual hull,
missing almost all details.

Ablation Study of Network Architecture. In Figure 4,
we show the results for different architecture configurations.
Using very few units per layer leads to sharper geometry
while the opposite leads to a smoother surface. In the first
case, a sharper geometry does not equate with a better es-
timation of the surface (e.g., shadows are baked into the



Deep concavities Failed remeshing Overexposed regions

Figure 5. Failure cases of our reconstruction.

geometry). In the latter case, we obtain a smooth geome-
try but we lose geometrical sharpness. Moreover, with the
increase in the network parameters, the optimization time
grows accordingly.

We found that using 3 layers with 256 units per layers
is a good compromise between network complexity and ex-
pressive power and yields the best results.

For SIREN [22], we noticed that the optimization pro-
cedure diverges with our default learning rate. We lowered
it to 10−4 to obtain meaningful results. Despite the lower
learning rate, SIREN still converges quickly.

6. Interactive Viewer

Since the renderer we use for optimization has the lay-
out of a standard real-time graphics pipeline, the shader
part (i.e. the neural shader) can be readily integrated into
other graphics pipelines after training, allowing the interac-
tive synthesis of novel views.

As an example, we implemented a “neural” viewer that
uses OpenGL to rasterize positions and normals. Then, we
use OpenGL-CUDA interoperability and PyTorch to shade
the buffers with a pre-trained neural shader. We can envi-
sion an exciting extension where the shader is directly com-
piled to GPU byte code and used similar to other shaders
written in high-level shading languages.

7. Failure Cases

Figure 5 shows some failure cases of our reconstruction
method. Since the reconstruction starts from a visual hull-
like mesh, deep concavities require large movements in the
mesh. This movement is driven by relatively weak shading
gradients, which cannot recover these concavities before the
mesh becomes overly stiff (e.g. because the gradient descent
step size is reduced during remeshing). On the other hand,
silhouette gradients are larger than shading gradients, so the
mesh easily “grows” to fill the masks.

We also observed that the remeshing operation some-
times produces tangled meshes for some objects. This fail-
ure case is unrecoverable and the reconstruction needs to be
restarted. We are investigating the issue and will coordinate
with the authors of the remeshing library.

Some regions show weak structure in the majority of im-
ages for a variety of reasons, for example because they are
overexposed. Since we randomly sample one camera view
per iteration, there is a high probability to select an im-
age with low structure information for these regions. Using
such a view can drive the regions’ vertices in unexpected
directions away from the actual surface. If such movement
occurs at the wrong time (e.g. right before remeshing), the
optimization often fails to correct those vertices.

References
[1] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of

Software Tools, 2000. 1
[2] Alex Clark et al. Pillow (pil fork). https://github.

com/python-pillow/Pillow, 2021. 1
[3] Michael Dawson-Haggerty et al. Trimesh. https://

github.com/mikedh/trimesh. 1
[4] Szabolcs Dombi. Moderngl, high performance python

bindings for opengl 3.3+. https://github.com/
moderngl/moderngl. 1

[5] DTU. MVS Data Set – 2014. https : / /
roboimagedata.compute.dtu.dk/?page_id=
36. 1

[6] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt,
Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.
Array programming with NumPy. Nature, 585(7825):357–
362, Sept. 2020. 1

[7] J. D. Hunter. Matplotlib: A 2d graphics environment. Com-
puting in Science & Engineering, 9(3):90–95, 2007. 1

[8] Alec Jacobson, Daniele Panozzo, et al. libigl: A simple
C++ geometry processing library. https://libigl.
github.io/, 2018. 1

[9] Justin Johnson, Nikhila Ravi, Jeremy Reizenstein, David
Novotny, Shubham Tulsiani, Christoph Lassner, and Steve
Branson. Accelerating 3d deep learning with pytorch3d. In
SIGGRAPH Asia 2020 Courses, SA ’20, New York, NY,
USA, 2020. Association for Computing Machinery. 1

[10] Almar Klein et al. Imageio. https://github.com/
imageio/imageio. 1

https://github.com/python-pillow/Pillow
https://github.com/python-pillow/Pillow
https://github.com/mikedh/trimesh
https://github.com/mikedh/trimesh
https://github.com/moderngl/moderngl
https://github.com/moderngl/moderngl
https://roboimagedata.compute.dtu.dk/?page_id=36
https://roboimagedata.compute.dtu.dk/?page_id=36
https://roboimagedata.compute.dtu.dk/?page_id=36
https://libigl.github.io/
https://libigl.github.io/
https://github.com/imageio/imageio
https://github.com/imageio/imageio


[11] Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Floris
Bruynooghe, Brianna Laugher, and Florian Bruhin. pytest.
https : / / github . com / pytest - dev / pytest,
2004. 1

[12] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol,
Jaakko Lehtinen, and Timo Aila. Modular primitives for
high-performance differentiable rendering. ACM Transac-
tions on Graphics, 39(6), 2020. 1

[13] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1

[14] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
Proceedings IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2020. 1, 2

[15] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019. 1

[16] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020. 1

[17] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 2

[18] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In European Conference on
Computer Vision (ECCV), 2016. 2

[19] Oliver Schreer, Ingo Feldmann, Sylvain Renault, Marcus
Zepp, Markus Worchel, Peter Eisert, and Peter Kauff. Cap-
ture and 3d video processing of volumetric video. In 2019
IEEE International Conference on Image Processing (ICIP),
pages 4310–4314, 2019. 1

[20] Johannes Lutz Schönberger et al. COLMAP Release
3.6. https://github.com/colmap/colmap/
releases/tag/3.6. 2

[21] Silvia Sellán and Baptiste Nicolet. Libigl botsch-kobbelt
local remesher. https://github.com/sgsellan/
botsch-kobbelt-remesher-libigl, 2021. 1

[22] Vincent Sitzmann, Julien N.P. Martel, Alexander W.
Bergman, David B. Lindell, and Gordon Wetzstein. Implicit
neural representations with periodic activation functions. In
Proc. NeurIPS, 2020. 1, 4

[23] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun,
Matan Atzmon, Basri Ronen, and Yaron Lipman. Derived
DTU MVS Dataset. https://www.dropbox.com/

sh/5tam07ai8ch90pf/AADniBT3dmAexvm_J1oL_
_uoa. 1

[24] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. IDR Code.
https://github.com/lioryariv/idr. 2

[25] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview neu-
ral surface reconstruction by disentangling geometry and ap-
pearance. Advances in Neural Information Processing Sys-
tems, 33, 2020. 1, 2

https://github.com/pytest-dev/pytest
https://github.com/colmap/colmap/releases/tag/3.6
https://github.com/colmap/colmap/releases/tag/3.6
https://github.com/sgsellan/botsch-kobbelt-remesher-libigl
https://github.com/sgsellan/botsch-kobbelt-remesher-libigl
https://www.dropbox.com/sh/5tam07ai8ch90pf/AADniBT3dmAexvm_J1oL__uoa
https://www.dropbox.com/sh/5tam07ai8ch90pf/AADniBT3dmAexvm_J1oL__uoa
https://www.dropbox.com/sh/5tam07ai8ch90pf/AADniBT3dmAexvm_J1oL__uoa
https://github.com/lioryariv/idr

	. Ethical Considerations
	. Dataset Details
	. DTU MVS Dataset
	. Human Body Dataset

	. Implementation Details
	. Experiment Details
	. Additional Experimental Results
	. Interactive Viewer
	. Failure Cases

