
Supplemental Material :
Revisiting Near/Remote Sensing with Geospatial Attention

Scott Workman
DZYNE Technologies

M. Usman Rafique
Kitware, Inc.

Hunter Blanton
University of Kentucky

Nathan Jacobs
University of Kentucky

1. Dataset Details

We extend the Brooklyn and Queens dataset [2] with
two new per-pixel labeling tasks, estimating land cover
and estimating height. The original dataset contains non-
overlapping overhead images downloaded from Bing Maps
(zoom level 19, approximately 30 cm per pixel) and street-
level panoramas from Google Street View. The Brook-
lyn subset consists of 43,605 overhead images and 139,327
panoramas. The held-out Queens subset, used solely for
evaluation, consists of 10,044 overhead images and 38,603
panoramas. Including our two new tasks, there are five tasks
for this dataset: estimating land use, building age, building
function, land cover, and height. For all experiments, we
include the 20 closest street-level panoramas to each over-
head image. For evaluation, we use the original train/test
splits.

2. Qualitative Results

We show qualitative results for building function estima-
tion in Figure 1. Due the the large number of classes (206
building types), we visualize results for this task as a top-k
image where each pixel is assigned a color (from green to
red) by the rank of the correct class in the posterior distri-
bution. Bright green corresponds to rank one and red cor-
responds rank 10 or more. We show additional qualitative
results for the other tasks in Figure 2.

3. Attention Visualization

Figure 3 visualizes the spatial attention maps for several
input images as the target location changes. For this exper-
iment, we use our full method and output from the height
estimation task. Each image is color-coded and the capture
location is represented by the same-colored dot in the over-
head image. Similarly, the attention maps are color-coded,
with the target location represented by the same-colored
square in the overhead image. As observed, the region of
high attention is generally oriented toward the target pixel.
Our approach is able to learn these geometric relationships
without requiring direct correspondences.

Figure 1. Qualitative results for building function. Each pixel rep-
resents the rank of the correct class in the posterior distribution
(green to red). Bright green corresponds to rank one and red cor-
responds to rank 10 or more.

Similarly, Figure 4 visualizes the spatial attention maps
for several pairs of input images and target locations, for
three different tasks. For each overhead image, the top
row of attention maps corresponds to the □ in the overhead
image, and the bottom row corresponds to the ×. As ex-
pected, the region of high attention is generally oriented to-
ward the target pixel and the attention maps are task depen-
dent. These results demonstrate that our approach is able
to learn rich geometric relationships without explicitly pro-
viding such supervision and without requiring direct corre-
spondences or other strong geometric assumptions, such as
single-image depth estimation.

4. Extended Evaluation on Queens

Following the standard protocol, all our models are
trained exclusively on the training subset of the Brooklyn
portion of the “Brooklyn and Queens” dataset [2] (aside
from pre-training). In the main paper, we presented results
on the held-out testing subset of the Brooklyn portion of
the dataset. Here we extend this analysis to show how the
model generalizes to the Queens portion. This benchmark
is known to be challenging due to large differences in the
underlying label distributions and building appearance be-
tween the two portions.

1



Table 1 shows the results of our approach versus base-
lines on Queens. Our approach, which integrates geospatial
attention, generally matches or outperforms two prior meth-
ods as well as the single-modality baselines. While there
is clearly work left to be done to improve domain adap-
tation, this result demonstrates that our model is not just
over-fitting to the Brooklyn region.

Table 2 extends the ablation study from the main paper,
which highlights the importance of the different input fea-
tures used for geospatial attention, to the remaining tasks
(building age, building function, land cover and height). As
before, our full approach outperforms baselines, with the
geometric features being essential for achieving good per-
formance.

5. Detailed Architecture

We provide detailed architecture descriptions for the
components of our network. Table 3 and Table 4 show the
feature encoders used for the overhead (EfficientNet-B4)
and ground-level (ResNet-50) imagery, respectively. Ta-
ble 5 shows the architecture for forming the dense ground-
level feature map using geospatial attention. Table 6 cor-
responds to the fusion network for combining the overhead
feature with the dense ground-level feature map. Finally,
Table 7 shows our U-Net style decoder used for generating
the segmentation output.

6. Computational Analysis

While our method offers significantly improved metrics
over the overhead-image only method, it comes at an in-
crease in computational cost. This difference is especially
pronounced during training, where a single training run for
our full method takes around 67 hours but the overhead-
only baseline (remote) only required around 8 hours. The
ground-only baseline (proximate) required around 54 hours
to train. We conclude that the primary computational in-
crease is due to the inclusion of the ground-level images.
However, we did not extensively optimize for training time
computational efficiency. While training time is important,
inference time is often a much more important factor in re-
mote sensing applications. We found in our unoptimized
implementation that our method requires ∼0.09 seconds for
a single overhead image (and the corresponding ground-
level images). This compares to ∼0.03 seconds for the
overhead-only baseline.

References
[1] Rui Cao, Jiasong Zhu, Wei Tu, Qingquan Li, Jinzhou Cao,

Bozhi Liu, Qian Zhang, and Guoping Qiu. Integrating aerial
and street view images for urban land use classification. Re-
mote Sensing, 10(10):1553, 2018. 4

[2] Scott Workman, Menghua Zhai, David J. Crandall, and
Nathan Jacobs. A Unified Model for Near and Remote Sens-
ing. In IEEE International Conference on Computer Vision,
2017. 1, 4



Height Land Cover Age Land Use

Figure 2. Additional qualitative results: (left) ground truth and (right) ours.



Figure 3. Visualizing spatial attention maps from our full method as the target location changes (height prediction task). Each column
shows attention maps for one panorama, with the location of the panorama represented by the same-colored dot in the overhead image.
Similarly, the attention maps are color-coded corresponding to the target location, which is represented by the same-colored square in the
overhead image.

Table 1. Queens evaluation results.

Land Use Age Function Land Cover Height
mIOU Acc mIOU Acc mIOU Acc mIOU Acc RMSE RMSE log

Workman et al. [2] 33.48% 70.55% 9.53% 29.76% 3.73% 34.13%
Cao et al. [1] 39.40% 74.87%
proximate 33.84% 68.88% 10.44% 30.13% 3.63% 33.27% 30.02% 59.97% 4.597 1.236
remote 34.16% 72.30% 8.31% 22.91% 2.85% 29.46% 62.63% 83.54% 3.319 0.988
ours 42.93% 76.85% 12.88% 32.93% 4.08% 34.04% 61.24% 83.82% 3.003 0.946



Figure 4. Spatial attention maps for several ground-level images and target locations using our full method. The location of each panorama
is represented by the same-colored dot in the overhead image. For each panorama, the top row of attentions maps corresponds to using the
orange □ in the overhead image as the target location, while the bottom row corresponds to using the purple × as the target location. From
top to bottom, the tasks correspond to height estimation, land cover segmentation, and building age prediction.

Table 2. Ablation study highlighting the importance of different input features for geospatial attention.

Age Function Land Cover Height
Panorama Overhead Geometry mIOU Acc mIOU Acc mIOU Acc RMSE RMSE log

✓ 33.52% 54.47% 13.60% 46.53% 72.95% 87.49% 3.128 0.766
✓ 32.49% 53.15% 14.11% 46.44% 73.41% 87.57% 3.135 0.781

d 39.28% 60.02% 17.58% 51.40% 73.83% 87.56% 3.001 0.755
θ 37.40% 58.57% 17.74% 50.46% 72.90% 87.61% 3.041 0.762
d, θ 51.07% 70.04% 24.21% 59.07% 72.61% 87.93% 2.878 0.747

✓ ✓ d, θ 51.70% 70.34% 27.40% 60.31% 74.59% 88.10% 2.845 0.747



Table 3. Overhead image feature extractor.

Layer (type:depth-idx) Input Shape Kernel Shape Output Shape Param #
EfficientNet: 1 – – – –
— ModuleList: 2-1 – – – –
— Conv2dStaticSamePadding: 2-2 [1, 3, 256, 256] [3, 48, 3, 3] [1, 48, 128, 128] –
— — ZeroPad2d: 3-1 [1, 3, 256, 256] – [1, 3, 257, 257] –
— BatchNorm2d: 2-3 [1, 48, 128, 128] [48] [1, 48, 128, 128] 96
— MemoryEfficientSwish: 2-4 [1, 48, 128, 128] – [1, 48, 128, 128] –
— ModuleList: 2-1 – – – –
— — MBConvBlock: 3-2 [1, 48, 128, 128] – [1, 24, 128, 128] 2,940
— — MBConvBlock: 3-3 [1, 24, 128, 128] – [1, 24, 128, 128] 1,206
— — MBConvBlock: 3-4 [1, 24, 128, 128] – [1, 32, 64, 64] 11,878
— — MBConvBlock: 3-5 [1, 32, 64, 64] – [1, 32, 64, 64] 18,120
— — MBConvBlock: 3-6 [1, 32, 64, 64] – [1, 32, 64, 64] 18,120
— — MBConvBlock: 3-7 [1, 32, 64, 64] – [1, 32, 64, 64] 18,120
— — MBConvBlock: 3-8 [1, 32, 64, 64] – [1, 56, 32, 32] 25,848
— — MBConvBlock: 3-9 [1, 56, 32, 32] – [1, 56, 32, 32] 57,246
— — MBConvBlock: 3-10 [1, 56, 32, 32] – [1, 56, 32, 32] 57,246
— — MBConvBlock: 3-11 [1, 56, 32, 32] – [1, 56, 32, 32] 57,246
— — MBConvBlock: 3-12 [1, 56, 32, 32] – [1, 112, 16, 16] 70,798
— — MBConvBlock: 3-13 [1, 112, 16, 16] – [1, 112, 16, 16] 197,820
— — MBConvBlock: 3-14 [1, 112, 16, 16] – [1, 112, 16, 16] 197,820
— — MBConvBlock: 3-15 [1, 112, 16, 16] – [1, 112, 16, 16] 197,820
— — MBConvBlock: 3-16 [1, 112, 16, 16] – [1, 112, 16, 16] 197,820
— — MBConvBlock: 3-17 [1, 112, 16, 16] – [1, 112, 16, 16] 197,820
— — MBConvBlock: 3-18 [1, 112, 16, 16] – [1, 160, 16, 16] 240,924
— — MBConvBlock: 3-19 [1, 160, 16, 16] – [1, 160, 16, 16] 413,160
— — MBConvBlock: 3-20 [1, 160, 16, 16] – [1, 160, 16, 16] 413,160
— — MBConvBlock: 3-21 [1, 160, 16, 16] – [1, 160, 16, 16] 413,160
— — MBConvBlock: 3-22 [1, 160, 16, 16] – [1, 160, 16, 16] 413,160
— — MBConvBlock: 3-23 [1, 160, 16, 16] – [1, 160, 16, 16] 413,160
— — MBConvBlock: 3-24 [1, 160, 16, 16] – [1, 272, 8, 8] 520,904
— — MBConvBlock: 3-25 [1, 272, 8, 8] – [1, 272, 8, 8] 1,159,332
— — MBConvBlock: 3-26 [1, 272, 8, 8] – [1, 272, 8, 8] 1,159,332
— — MBConvBlock: 3-27 [1, 272, 8, 8] – [1, 272, 8, 8] 1,159,332
— — MBConvBlock: 3-28 [1, 272, 8, 8] – [1, 272, 8, 8] 1,159,332
— — MBConvBlock: 3-29 [1, 272, 8, 8] – [1, 272, 8, 8] 1,159,332
— — MBConvBlock: 3-30 [1, 272, 8, 8] – [1, 272, 8, 8] 1,159,332
— — MBConvBlock: 3-31 [1, 272, 8, 8] – [1, 272, 8, 8] 1,159,332
— — MBConvBlock: 3-32 [1, 272, 8, 8] – [1, 448, 8, 8] 1,420,804
— — MBConvBlock: 3-33 [1, 448, 8, 8] – [1, 448, 8, 8] 3,049,200
— Conv2dStaticSamePadding: 2-5 [1, 448, 8, 8] [448, 1792, 1, 1] [1, 1792, 8, 8] –
— — Identity: 3-34 [1, 448, 8, 8] – [1, 448, 8, 8] –
— BatchNorm2d: 2-6 [1, 1792, 8, 8] [1792] [1, 1792, 8, 8] 3,584
— MemoryEfficientSwish: 2-7 [1, 1792, 8, 8] – [1, 1792, 8, 8] –



Table 4. Ground-level image feature extractor.

Layer (type:depth-idx) Input Shape Kernel Shape Output Shape Param #
Sequential: 1-1 [20, 3, 128, 500] – [20, 1024, 8, 32] –
— Conv2d: 2-1 [20, 3, 128, 500] [3, 64, 7, 7] [20, 64, 64, 250] (9,408)
— BatchNorm2d: 2-2 [20, 64, 64, 250] [64] [20, 64, 64, 250] (128)
— ReLU: 2-3 [20, 64, 64, 250] – [20, 64, 64, 250] –
— MaxPool2d: 2-4 [20, 64, 64, 250] – [20, 64, 32, 125] –
— Sequential: 2-5 [20, 64, 32, 125] – [20, 256, 32, 125] –
— — Bottleneck: 3-1 [20, 64, 32, 125] – [20, 256, 32, 125] (75,008)
— — Bottleneck: 3-2 [20, 256, 32, 125] – [20, 256, 32, 125] (70,400)
— — Bottleneck: 3-3 [20, 256, 32, 125] – [20, 256, 32, 125] (70,400)
— Sequential: 2-6 [20, 256, 32, 125] – [20, 512, 16, 63] –
— — Bottleneck: 3-4 [20, 256, 32, 125] – [20, 512, 16, 63] (379,392)
— — Bottleneck: 3-5 [20, 512, 16, 63] – [20, 512, 16, 63] (280,064)
— — Bottleneck: 3-6 [20, 512, 16, 63] – [20, 512, 16, 63] (280,064)
— — Bottleneck: 3-7 [20, 512, 16, 63] – [20, 512, 16, 63] (280,064)
— Sequential: 2-7 [20, 512, 16, 63] – [20, 1024, 8, 32] –
— — Bottleneck: 3-8 [20, 512, 16, 63] – [20, 1024, 8, 32] 1,512,448
— — Bottleneck: 3-9 [20, 1024, 8, 32] – [20, 1024, 8, 32] 1,117,184
— — Bottleneck: 3-10 [20, 1024, 8, 32] – [20, 1024, 8, 32] 1,117,184
— — Bottleneck: 3-11 [20, 1024, 8, 32] – [20, 1024, 8, 32] 1,117,184
— — Bottleneck: 3-12 [20, 1024, 8, 32] – [20, 1024, 8, 32] 1,117,184
— — Bottleneck: 3-13 [20, 1024, 8, 32] – [20, 1024, 8, 32] 1,117,184
Conv2d: 1-2 [20, 1024, 8, 32] [1024, 128, 1, 1] [20, 128, 8, 32] 131,200
LayerNorm: 1-3 [20, 128, 8, 32] [8, 128, 32] [20, 128, 8, 32] 65,536

Table 5. Grid architecture.

Layer (type:depth-idx) Input Shape Kernel Shape Output Shape Param #
Grid: 1-1 – – [1, 128, 32, 32] –
— GeoAttention: 2-1 – – [1024, 20, 8, 32] –
— — Conv2d: 3-1 [20480, 8, 8, 32] [8, 1, 3, 3] [20480, 1, 8, 32] 73
— — Conv2d: 3-2 [20480, 8, 8, 32] [8, 1, 5, 5] [20480, 1, 8, 32] 201
— — Conv2d: 3-3 [20480, 2, 8, 32] [2, 1, 1, 1] [20480, 1, 8, 32] 3
— —Sigmoid: 3-4 [1024, 20, 8, 32] – [1024, 20, 8, 32] –
BatchNorm2d: 1-2 [1, 128, 32, 32] [128] [1, 128, 32, 32] 256



Table 6. Fusion (dense ground-level/overhead feature map) architecture.

Layer (type:depth-idx) Input Shape Kernel Shape Output Shape Param #
Conv2d: 1-1 [1, 184, 32, 32] [184, 160, 3, 3] [1, 160, 32, 32] 265,120
BatchNorm2d: 1-2 [1, 160, 32, 32] [160] [1, 160, 32, 32] 320
ReLU: 1-3 [1, 160, 32, 32] – [1, 160, 32, 32] –
Conv2d: 1-4 [1, 160, 32, 32] [160, 160, 3, 3] [1, 160, 32, 32] 230,560
BatchNorm2d: 1-5 [1, 160, 32, 32] [160] [1, 160, 32, 32] 320
ReLU: 1-6 [1, 160, 32, 32] – [1, 160, 32, 32] –
Conv2d: 1-7 [1, 160, 32, 32] [160, 160, 3, 3] [1, 160, 32, 32] 230,560
BatchNorm2d: 1-8 [1, 160, 32, 32] [160] [1, 160, 32, 32] 320
ReLU: 1-9 [1, 160, 32, 32] – [1, 160, 32, 32] –
MaxPool2d: 1-10 [1, 160, 32, 32] – [1, 160, 16, 16] –
Conv2d: 1-11 [1, 160, 16, 16] [160, 448, 3, 3] [1, 448, 16, 16] 645,568
BatchNorm2d: 1-12 [1, 448, 16, 16] [448] [1, 448, 16, 16] 896
ReLU: 1-13 [1, 448, 16, 16] – [1, 448, 16, 16] –
Conv2d: 1-14 [1, 448, 16, 16] [448, 448, 3, 3] [1, 448, 16, 16] 1,806,784
BatchNorm2d: 1-15 [1, 448, 16, 16] [448] [1, 448, 16, 16] 896
ReLU: 1-16 [1, 448, 16, 16] – [1, 448, 16, 16] –
Conv2d: 1-17 [1, 448, 16, 16] [448, 448, 3, 3] [1, 448, 16, 16] 1,806,784
BatchNorm2d: 1-18 [1, 448, 16, 16] [448] [1, 448, 16, 16] 896
ReLU: 1-19 [1, 448, 16, 16] – [1, 448, 16, 16] –
MaxPool2d: 1-20 [1, 448, 16, 16] – [1, 448, 8, 8] –



Table 7. Decoder architecture.

Layer (type:depth-idx) Input Shape Kernel Shape Output Shape Param #
Upsample: 1-1 [1, 448, 8, 8] – [1, 448, 16, 16] –
DoubleConv: 1-2 [1, 448, 16, 16] – [1, 448, 16, 16] –
— Sequential: 2-1 [1, 448, 16, 16] – [1, 448, 16, 16] –
— — Conv2d: 3-1 [1, 448, 16, 16] [448, 448, 3, 3] [1, 448, 16, 16] 1,806,784
— — BatchNorm2d: 3-2 [1, 448, 16, 16] [448] [1, 448, 16, 16] 896
— — ReLU: 3-3 [1, 448, 16, 16] – [1, 448, 16, 16] –
— — Conv2d: 3-4 [1, 448, 16, 16] [448, 448, 3, 3] [1, 448, 16, 16] 1,806,784
— — BatchNorm2d: 3-5 [1, 448, 16, 16] [448] [1, 448, 16, 16] 896
— — ReLU: 3-6 [1, 448, 16, 16] – [1, 448, 16, 16] –
Upsample: 1-3 [1, 608, 16, 16] – [1, 608, 32, 32] –
DoubleConv: 1-4 [1, 608, 32, 32] – [1, 160, 32, 32] –
— Sequential: 2-2 [1, 608, 32, 32] – [1, 160, 32, 32] –
— — Conv2d: 3-7 [1, 608, 32, 32] [608, 160, 3, 3] [1, 160, 32, 32] 875,680
— — BatchNorm2d: 3-8 [1, 160, 32, 32] [160] [1, 160, 32, 32] 320
— — ReLU: 3-9 [1, 160, 32, 32] – [1, 160, 32, 32] –
— — Conv2d: 3-10 [1, 160, 32, 32] [160, 160, 3, 3] [1, 160, 32, 32] 230,560
— — BatchNorm2d: 3-11 [1, 160, 32, 32] [160] [1, 160, 32, 32] 320
— — ReLU: 3-12 [1, 160, 32, 32] – [1, 160, 32, 32] –
Upsample: 1-5 [1, 216, 32, 32] – [1, 216, 64, 64] –
DoubleConv: 1-6 [1, 216, 64, 64] – [1, 56, 64, 64] –
— Sequential: 2-3 [1, 216, 64, 64] – [1, 56, 64, 64] –
— — Conv2d: 3-13 [1, 216, 64, 64] [216, 56, 3, 3] [1, 56, 64, 64] 108,920
— — BatchNorm2d: 3-14 [1, 56, 64, 64] [56] [1, 56, 64, 64] 112
— — ReLU: 3-15 [1, 56, 64, 64] – [1, 56, 64, 64] –
— — Conv2d: 3-16 [1, 56, 64, 64] [56, 56, 3, 3] [1, 56, 64, 64] 28,280
— — BatchNorm2d: 3-17 [1, 56, 64, 64] [56] [1, 56, 64, 64] 112
— — ReLU: 3-18 [1, 56, 64, 64] – [1, 56, 64, 64] –
Upsample: 1-7 [1, 88, 64, 64] – [1, 88, 128, 128] –
DoubleConv: 1-8 [1, 88, 128, 128] – [1, 88, 128, 128] –
— Sequential: 2-4 [1, 88, 128, 128] – [1, 88, 128, 128] –
— — Conv2d: 3-19 [1, 88, 128, 128] [88, 88, 3, 3] [1, 88, 128, 128] 69,784
— — BatchNorm2d: 3-20 [1, 88, 128, 128] [88] [1, 88, 128, 128] 176
— — ReLU: 3-21 [1, 88, 128, 128] – [1, 88, 128, 128] –
— — Conv2d: 3-22 [1, 88, 128, 128] [88, 88, 3, 3] [1, 88, 128, 128] 69,784
— — BatchNorm2d: 3-23 [1, 88, 128, 128] [88] [1, 88, 128, 128] 176
— — ReLU: 3-24 [1, 88, 128, 128] – [1, 88, 128, 128] –
Upsample: 1-9 [1, 88, 128, 128] – [1, 88, 256, 256] –
DoubleConv: 1-10 [1, 88, 256, 256] – [1, 88, 256, 256] –
— Sequential: 2-5 [1, 88, 256, 256] – [1, 88, 256, 256] –
— — Conv2d: 3-25 [1, 88, 256, 256] [88, 88, 3, 3] [1, 88, 256, 256] 69,784
— — BatchNorm2d: 3-26 [1, 88, 256, 256] [88] [1, 88, 256, 256] 176
— — ReLU: 3-27 [1, 88, 256, 256] – [1, 88, 256, 256] –
— — Conv2d: 3-28 [1, 88, 256, 256] [88, 88, 3, 3] [1, 88, 256, 256] 69,784
— — BatchNorm2d: 3-29 [1, 88, 256, 256] [88] [1, 88, 256, 256] 176
— — ReLU: 3-30 [1, 88, 256, 256] – [1, 88, 256, 256] –
Conv2d: 1-11 [1, 88, 256, 256] [88, 13, 1, 1] [1, 13, 256, 256] 1,157


