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Figure 5. (Left) Zero-shot and fine-tuned models exhibit diversity in their predictions. (Middle) On most distribution shifts, the zero-shot
model overrides the linear classifier more than it is overridden. The reverse is true for ImageNet (reference). (Right) Similarly, zero-shot
models are more confident under distribution shift, while the reverse is true on the reference distribution. The margin δf measures the
average difference between the largest and second largest unormalized output for classifier f

A. Discussion
This section further analyzes the empirical phenomena we have observed so far. We begin with the case where only the final
linear layer is fine-tuned and predictions from the weight-space ensemble can be factored into the outputs of the zero-shot and
fine-tuned model. Next, we connect our observations regarding end-to-end fine-tuning with earlier work on the phenomenology
of deep learning.

A.1. Zero-shot and fine-tuned models are complementary

In this section, we find that the zero-shot and fine-tuned models have diverse predictions, both on reference and shifted
distributions. Moreover, while the fine-tuned models are more confident on the reference distribution, the reverse is true under
distribution shift.

Zero-shot and fine-tuned models are diverse. In certain cases, ensemble accuracy is correlated with diversity among the
constituents [30, 57]. If two models make coincident mistakes, so will their ensemble, and no benefit will be gained from
combining them. Here, we explore two measures of diversity: prediction diversity, which measures the fraction of examples for
which two classifiers disagree but one is correct; and Centered Kernel Alignment Complement, the complement of CKA [51].
Additional diversity measures and details are provided in Appendix G. In Figure 5 (left), we show that the zero-shot and
fine-tuned models are diverse both on the reference and shifted distributions, despite sharing the same backbone. As a point
of comparison, we include avg. diversity measures between two linear classifiers fine-tuned with random splits on half of
ImageNet,3 denoted in orange in Figure 5.

Models are more confident where they excel. In order for the ensemble model to be effective, it should leverage each
model’s expertise based on which distribution the data is from. Here, we empirically show that this occurs on a number of
datasets we consider. First, we examine the cases where the models being ensembled disagree. We say the zero-shot model
overrides the fine-tuned model if their predictions disagree and the zero-shot prediction matches that of the weight-space
ensemble. Similarly, if models disagree and the linear classifier prediction matches the ensemble, we say the zero-shot is
overridden. Figure 5 (middle) shows the fraction of samples where the zero-shot model overrides and is overridden by the
fine-tuned linear classifier for α=0.5. Other than ImageNetV2, which was collected to closely reproduce ImageNet, the
zero-shot model overrides the linear classifier more than it is overridden on the distribution shifts.

Additionally, we are interested in measuring model confidence. Recall that we are ensembling quantities before a softmax is
applied, so we avoid criteria that use probability vectors, e.g., Guo et al. [33]. Instead, we consider the margin δ between the
largest and second largest output of each classifier. Figure 5 (right) shows that the zero-shot model is more confident in its
predictions under distribution shift, while the reverse is true on the reference distribution.

A.2. An error landscape perspective

We now turn to empirical phenomena we observe when weight-space ensembling all layers in the network. Specifically, this
section formalizes our observations and details related phenomena. Recall that the weight-space ensemble of θ0 and θ1 is

3Two linear classifiers fine-tuned on the same data converge to similar solutions, resulting in negligible diversity. As a stronger baseline, we fine-tune
classifiers on different subsets of ImageNet, with half of the data.
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Figure 6. On ImageNet and the main distribution shifts we consider, linearly interpolating between the weights of θ0 and θ1 exceeds the
baseline of linearly interpolating the accuracies of the two models for all α (Observation 1). Moreover, there exists an α for which WiSE-FT
outperforms both the zero-shot and fine-tuned models (Observation 2).

given by f(x, (1− α) · θ0 + α · θ1) (Equation 1).

For a distribution D and model f , let AccD,f (θ) denote the expected accuracy of f evaluated with parameters θ on distribution
D.

Observation 1: As illustrated in Figure 6, on ImageNet and the five associated distribution shifts we consider
AccD,f ((1− α) · θ0 + α · θ1) ≥ (1− α) · AccD,f (θ0) + α · AccD,f (θ1) for all α ∈ [0, 1].

The equation above uses the baseline of linearly interpolating between the accuracies of the two endpoints, which is always
achievable by using weights θ1 with probability α and using model θ0 otherwise. In the case where the accuracy of both
endpoints are similar, the equation above is equivalent to the definition of Linear Mode Connectivity of Frankle et al. [25].

To assist in contextualizing Observation 1, we review related phenomena. Neural networks are nonlinear, hence weight-space
ensembles only achieve good performance in exceptional cases—interpolating the weights of two networks trained from a
random initialization results in no better accuracy than a random classifier [25]. Linear mode connectivity has been observed
by Frankle et al. [25]; Izmailov et al. [43] when part of the training trajectory is shared, and by Neyshabur et al. [73] when
two models are fine-tuned with a shared initialization. In particular, the observations of Neyshabur et al. [73] may elucidate
why weight-space ensembles attain high accuracy in the setting we consider, as they suggest that fine-tuning remains in a
region where solutions are connected by a linear path along which error remains low. Instead of considering the weight-space
ensemble of two fine-tuned models, we consider the weight-space ensemble of the pre-trained and fine-tuned models. This is
only possible for a pre-trained model capable of zero-shot inference such as CLIP.

Observation 2: As illustrated by Figure 6, on ImageNet and the five associated distribution shifts we consider, weight-
space ensembling (end-to-end) may outperform both the zero-shot and fine-tuned models, i.e., there exists an α for which
AccD,f ((1− α) · θ0 + α · θ1) ≥ max {AccD,f (θ0) , AccD,f (θ1)}.
We are not the first to observe that when interpolating between models, the accuracy of models along the path may exceed that
of either endpoint [43, 73, 102]. Neyshabur et al. [73] conjecture that interpolation could produce solutions closer to the true
center of a basin. In contrast to Neyshabur et al. [73], we interpolate between models which observe different data.

B. Concurrent and subsequent work
Topics including robust fine-tuning, ensembles for improved robustness, and interpolating the weights of fine-tuned models
are studied in concurrent and subsequent work. Kumar et al. [55] observe that fine-tuning end-to-end often results in higher
accuracy on the reference distribution but lower accuracy under distribution shift, compared to linear classifier fine-tuning. To
address this, Kumar et al. [55] first fine-tune a linear classifier and use this as the initialization for end-to-end fine-tuning. We
consider fine-tuning zero-shot models, and so we begin with a classifier (i.e., the zero-shot classifier) which we are using as
the initialization for end-to-end fine-tuning. In a separate work, Kumar et al. [56] find that calibrated output-space ensembles
can be used to mitigate accuracy trade-offs. In Figures 10 and 25 of the Appendix, we observe that it is possible to mitigate
accuracy trade-offs with output-space ensembles even without calibration.

Hewitt et al. [40] explore the application of output-space ensembles and distillation to mitigate accuracy trade-offs which



arise in fine-tuning models for natural language generation. Hewitt et al. [40] observe that output-space ensembles mainly
outperform distillation, which we observe for a separate domain in Figure 13 of the Appendix. Gontijo-Lopes et al. [31]
explore output-space ensembles of models across hyper-parameters, architectures, frameworks, and datasets. They find that
specializing in subdomains of data leads to high ensemble performance. Finally, Matena & Raffel [66] introduce a method
of combining models in weight-space that goes beyond linear interpolation with a single mixing-coefficient as employed in
WiSE-FT. Specifically, Matena & Raffel [66] employ Fisher information as a measure of per-parameter importance. While
their experiments do not examine accuracy under distribution shift, their goal of combining differing expertise into one shared
model is well aligned with ours.

C. Pseudocode for WiSE-FT

Algorithm 1 Pytorch pseudocode for WiSE-FT

def wse(model, zeroshot_checkpoint, finetuned_checkpoint, alpha):
# load state dicts from checkpoints
theta_0 = torch.load(zeroshot_checkpoint)["state_dict"]
theta_1 = torch.load(finetuned_checkpoint)["state_dict"]

# make sure checkpoints are compatible
assert set(theta_0.keys()) == set(theta_1.keys())

# interpolate between all weights in the checkpoints
theta = {

key: (1-alpha) * theta_0[key] + alpha * theta_1[key]
for key in theta_0.keys()

}

# update the model (in-place) according to the new weights
model.load_state_dict(theta)

def wise_ft(model, dataset, zeroshot_checkpoint, alpha, hparams):
# load the zero-shot weights
theta_0 = torch.load(zeroshot_checkpoint)["state_dict"]
model.load_state_dict(theta_0)

# standard fine-tuning
finetuned_checkpoint = finetune(model, dataset, hparams)

# perform weight-space ensembling (in-place)
wse(model, zeroshot_checkpoint, finetuned_checkpoint, alpha)

D. Mixing coefficient
Table 3 compares the performance of WiSE-FT using a fixed mixing coefficient α=0.5 with the fixed optimal mixing coefficient.
On ImageNet and the five derived distribution shifts, the average performance of the optimal α is 0 to 0.4 percentage points
better than that of α=0.5. Due to its simplicity and effectiveness, we recommend using α=0.5 when no domain knowledge is
available. Finding the optimal value of the mixing coefficient for any distribution is an interesting question for future work.
Unlike other hyperparameters, no re-training is required to test different α, so tuning is relatively cheap.

E. Additional experiments
This section supplements the results of Section 4. First, in Section E.1 we provide a breakdown of Figure 1 for each distribution
shift. Next, in Section E.2 we provide effective robustness scatter plots for six additional distribution shifts, finding WiSE-FT
to provide consistent improvements under distribution shift without any loss in performance on the reference distribution.
Section E.3 compares WiSE-FT with additional alternatives including distillation and CoOp [112]. Beyond robustness,
Section E.5 demonstrates that WiSE-FT can provide accuracy improvements on reference data, with a focus on the low-data
regime. Section E.6 showcases that the accuracy improvements under distribution shift are not isolated to large models, finding
similar trends across scales of pre-training computes. Section E.7 explores the application of WiSE-FT for additional models
such as ALIGN [45], a ViT-H/14 model pre-trained on JFT [21] and BASIC [77]. Finally, Section E.8 ensembles zero-shot
CLIP with an independently trained classifier.

E.1. Breakdown of CLIP experiments on ImageNet

In contrast to Figures 1 and 4, where our key experimental results for ImageNet and five derived distribution shifts are averaged,
we now display the results separately for each distribution shift. Results are provided in Figures 7, 8.



Distribution shifts Avg Avg
IN (ref.) IN-V2 IN-R IN-Sketch ObjectNet IN-A shifts ref., shifts

ViT-B/16, end-to-end 0.9 0.4 1.4 0.2 0.4 2.4 0.5 0.0
ViT-B/16, linear classifier 1.8 0.6 1.2 0.1 0.2 0.6 0.1 0.2
ViT-L/14@336, end-to-end 0.3 0.0 0.9 0.3 1.0 1.1 0.5 0.1
ViT-L/14@336, linear classifier 1.6 0.6 0.2 0.0 0.0 0.0 0.0 0.4

Table 3. Difference in performance (percentage points) between WiSE-FT using the optimal mixing coefficient and a fixed value of α=0.5
for CLIP ViT-B/16 and ViT-L/14@336. For each cell in the table, the optimal mixing coefficient α is chosen individually such that
the corresponding metric is maximized. Results for all mixing coefficients are available in Tables 4 and 5. Avg shifts displays the mean
performance among the five distribution shifts, while Avg reference, shifts shows the average of ImageNet (reference) and Avg shifts.

To assist in contextualizing the results, the scatter plots we display also show a wide range of machine learning models
from a comprehensive testbed of evaluations [70, 97], including: models trained on S tr

D (standard training); models trained
on additional data and fine-tuned using S tr

D (trained with more data); and models trained using various existing robustness
interventions, e.g. special data augmentation [19, 22, 28, 37] or adversarially robust models [15, 65, 85, 87].

Additionally, Tables 4 and 5 show the performance of WiSE-FT for various values of the mixing coefficient α on ImageNet
and five derived distribution shifts, for CLIP ViT-L/14@336 and the ViT-B/16 model.
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Figure 7. A per-dataset breakdown of the key experimental results (Figure 1). WiSE-FT improves accuracy on ImageNet and five derived
distribution shifts. Standard ImageNet models, models trained with more data, and existing robustness interventions are from the testbed of
Taori et al. [97].
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Distribution shifts Avg Avg
IN (ref.) IN-V2 IN-R IN-Sketch ObjectNet IN-A shifts ref., shifts

WiSE-FT, end-to-end
α=0.00 76.6 70.5 89.0 60.9 68.5 77.6 73.3 74.9
α=0.05 78.7 72.6 89.6 62.2 69.5 79.0 74.6 76.7
α=0.10 80.4 74.2 89.9 63.1 70.4 79.8 75.5 78.0
α=0.15 81.9 75.4 90.1 63.8 71.1 80.4 76.2 79.1
α=0.20 83.2 76.5 90.3 64.3 71.6 80.8 76.7 80.0
α=0.25 84.2 77.5 90.3 64.6 72.1 81.0 77.1 80.7
α=0.30 85.1 78.3 90.3 64.9 72.1 81.0 77.3 81.2
α=0.35 85.7 78.7 90.1 65.0 72.0 81.0 77.4 81.6
α=0.40 86.2 79.2 89.9 65.0 71.9 80.7 77.3 81.8
α=0.45 86.6 79.4 89.6 64.9 71.6 80.6 77.2 81.9
α=0.50 86.8 79.5 89.4 64.7 71.1 79.9 76.9 81.8
α=0.55 87.0 79.3 88.9 64.5 70.7 79.1 76.5 81.8
α=0.60 87.1 79.2 88.5 64.1 70.1 78.2 76.0 81.5
α=0.65 87.1 79.3 87.8 63.6 69.6 77.4 75.5 81.3
α=0.70 87.1 79.1 87.0 63.1 68.9 76.5 74.9 81.0
α=0.75 87.0 78.8 86.1 62.5 68.1 75.2 74.1 80.5
α=0.80 86.9 78.4 85.1 61.7 67.4 73.8 73.3 80.1
α=0.85 86.8 78.0 84.0 61.0 66.4 72.0 72.3 79.5
α=0.90 86.7 77.6 82.8 60.0 65.5 69.9 71.2 79.0
α=0.95 86.5 77.2 81.3 59.0 64.3 67.7 69.9 78.2
α=1.00 86.2 76.8 79.8 57.9 63.3 65.4 68.6 77.4

WiSE-FT, linear classifier
α=0.00 76.6 70.5 89.0 60.9 69.1 77.7 73.4 75.0
α=0.05 77.6 71.3 89.2 61.3 69.3 78.3 73.9 75.8
α=0.10 78.4 72.1 89.4 61.7 69.6 78.8 74.3 76.3
α=0.15 79.3 72.8 89.5 62.1 70.0 79.0 74.7 77.0
α=0.20 80.0 73.5 89.6 62.4 70.3 79.3 75.0 77.5
α=0.25 80.8 74.1 89.7 62.6 70.5 79.5 75.3 78.0
α=0.30 81.5 74.8 89.7 62.8 70.7 79.5 75.5 78.5
α=0.35 82.1 75.4 89.8 62.9 70.7 79.6 75.7 78.9
α=0.40 82.7 75.8 89.7 63.0 70.7 79.6 75.8 79.2
α=0.45 83.2 76.1 89.7 63.0 70.7 79.6 75.8 79.5
α=0.50 83.7 76.3 89.6 63.0 70.7 79.7 75.9 79.8
α=0.55 84.1 76.5 89.5 62.9 70.5 79.6 75.8 79.9
α=0.60 84.4 76.7 89.3 62.7 70.3 79.5 75.7 80.1
α=0.65 84.7 76.8 89.1 62.6 70.1 79.4 75.6 80.2
α=0.70 85.0 76.9 88.9 62.3 69.9 79.1 75.4 80.2
α=0.75 85.1 76.8 88.4 61.9 69.7 78.9 75.1 80.1
α=0.80 85.3 76.9 87.9 61.4 69.3 78.5 74.8 80.0
α=0.85 85.3 76.7 87.4 60.9 68.8 78.1 74.4 79.8
α=0.90 85.3 76.4 86.8 60.3 68.4 77.3 73.8 79.5
α=0.95 85.3 76.2 86.1 59.5 67.7 76.8 73.3 79.3
α=1.00 85.2 75.8 85.3 58.7 67.2 76.1 72.6 78.9

Table 4. WiSE-FT accuracy on the reference and shifted distributions for various values of the mixing coefficient α. Results shown for CLIP
ViT-L/14@336. Note that α=0.0 corresponds to the zero-shot model, while α = 1.0 corresponds to standard fine-tuning. Avg shifts
displays the mean performance among the five distribution shifts, while Avg reference, shifts shows the average of ImageNet (reference) and
Avg shifts.



Distribution shifts Avg Avg
IN (ref.) IN-V2 IN-R IN-Sketch ObjectNet IN-A shifts ref., shifts

WiSE-FT, end-to-end
α=0.00 68.3 61.9 77.6 48.2 53.0 49.8 58.1 63.2
α=0.05 70.7 64.0 78.6 49.6 54.5 51.5 59.6 65.2
α=0.10 72.9 65.7 79.4 50.8 55.7 52.5 60.8 66.8
α=0.15 74.8 67.2 79.9 51.7 56.6 53.5 61.8 68.3
α=0.20 76.4 68.7 80.1 52.5 57.1 54.2 62.5 69.5
α=0.25 77.8 69.9 80.1 53.1 57.4 54.6 63.0 70.4
α=0.30 78.9 70.6 80.1 53.6 57.5 54.6 63.3 71.1
α=0.35 79.7 71.5 79.9 53.9 57.6 54.3 63.4 71.5
α=0.40 80.5 72.1 79.6 54.1 57.7 53.8 63.5 72.0
α=0.45 81.2 72.4 79.3 54.0 57.5 53.2 63.3 72.2
α=0.50 81.7 72.8 78.7 53.9 57.3 52.2 63.0 72.3
α=0.55 82.1 73.0 78.0 53.8 56.6 51.4 62.6 72.3
α=0.60 82.4 72.9 77.2 53.4 56.2 50.0 61.9 72.2
α=0.65 82.6 73.1 76.3 53.0 55.5 48.9 61.4 72.0
α=0.70 82.6 73.2 75.2 52.4 55.0 47.4 60.6 71.6
α=0.75 82.6 73.1 73.9 51.8 54.3 46.0 59.8 71.2
α=0.80 82.5 72.8 72.7 51.0 53.5 44.6 58.9 70.7
α=0.85 82.3 72.4 71.1 50.0 52.7 42.9 57.8 70.0
α=0.90 82.1 72.0 69.5 48.9 51.7 40.9 56.6 69.3
α=0.95 81.7 71.5 67.7 47.6 50.7 38.8 55.3 68.5
α=1.00 81.3 70.9 65.6 46.3 49.6 36.7 53.8 67.5

WiSE-FT, linear classifier
α=0.00 68.4 62.6 77.6 48.2 53.8 50.0 58.4 63.4
α=0.05 69.9 63.7 77.9 48.9 54.2 50.6 59.1 64.5
α=0.10 71.3 64.8 78.2 49.5 54.7 51.0 59.6 65.5
α=0.15 72.5 65.8 78.4 50.0 55.1 51.1 60.1 66.3
α=0.20 73.6 66.6 78.4 50.5 55.3 51.5 60.5 67.0
α=0.25 74.7 67.4 78.4 50.8 55.3 51.8 60.7 67.7
α=0.30 75.6 68.0 78.3 51.1 55.4 51.7 60.9 68.2
α=0.35 76.4 68.8 78.2 51.3 55.5 51.6 61.1 68.8
α=0.40 77.1 69.0 77.8 51.3 55.5 51.4 61.0 69.0
α=0.45 77.7 69.4 77.6 51.3 55.4 51.3 61.0 69.3
α=0.50 78.2 69.9 77.2 51.2 55.3 51.2 61.0 69.6
α=0.55 78.6 70.1 76.7 51.0 55.0 50.9 60.7 69.7
α=0.60 79.0 70.2 76.1 50.8 54.7 50.5 60.5 69.8
α=0.65 79.3 70.4 75.7 50.4 54.5 50.1 60.2 69.8
α=0.70 79.6 70.4 75.2 50.1 54.2 49.9 60.0 69.8
α=0.75 79.7 70.4 74.6 49.7 53.9 49.5 59.6 69.7
α=0.80 79.8 70.5 73.9 49.3 53.6 49.0 59.3 69.5
α=0.85 79.9 70.4 73.2 48.7 53.3 48.6 58.8 69.3
α=0.90 80.0 70.3 72.4 48.1 52.8 47.8 58.3 69.2
α=0.95 79.9 70.1 71.7 47.5 52.6 46.9 57.8 68.8
α=1.00 79.9 69.8 70.8 46.9 52.1 46.4 57.2 68.6

Table 5. WiSE-FT accuracy on the reference and shifted distributions for various values of the mixing coefficient α. Results shown for
CLIP ViT-B/16. Note that α=0.0 corresponds to the zero-shot model, while α = 1.0 corresponds to standard fine-tuning. Avg shifts
displays the mean performance among the five distribution shifts, while Avg reference, shifts shows the average of ImageNet (reference) and
Avg shifts.
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Figure 9. WiSE-FT improves accuracy under distribution shift relative to standard fine-tuning on ImageNet-Vid-Robust, YTBB-Robust [88],
CIFAR-10.1 [83], CIFAR-10.2 [62], WILDS-FMoW [13, 49], and WILDS-iWildCam [6, 49].

E.2. Robustness on additional distribution shifts

Figure 9 displays the effective robustness scatter plots for the six additional distribution shifts discussed in Section 4 (analogous
results provided in Table 6).

Concretely, we consider: (i) ImageNet-Vid-Robust and YTBB-Robust, datasets with distribution shift induced by temporal
perturbations in videos [88]; (ii) CIFAR-10.1 [83] and CIFAR-10.2 [62], reproductions of the popular image classification
dataset CIFAR-10 [54] with a distribution shift; (iii) WILDS-FMoW, a satellite image recognition task where the test set has a
geographic and temporal distribution shift [13, 49]; (iv) WILDS-iWildCam, a wildlife recognition task where the test set has a
geographic distribution shift [6, 49].

E.3. Comparison with alternative methods

We now extend Section 4 and compare WiSE-FT to additional methods of fine-tuning. We begin with contrasting the
weight-space and output-space ensemble. Next, we show the that varying the decay parameter of an exponential moving
average also moves along the curve produced by WiSE-FT. Finally, we compare with additional methods when fine-tuning
only a linear classifier including distillation and various forms of regularization.

E.3.1 Output-space ensembles

Figure 10 compares the weight-space ensemble f(x, (1− α) · θ0 + α · θ1) with the output-space ensemble (1− α)f(x, θ0) +
α · f(x, θ1). Both exhibit a favorable trend, though the output-space ensemble requires twice as much compute. Section H
further explores the relation between the weight-space and output-space ensemble.



Zero-shot Fine-tuned WiSE-FT, α=0.5 WiSE-FT, optimal α

ImageNet-Vid-Robust (pm-0) 95.9 86.5 95.5 96.5
YTBBRobust (pm-0) 95.8 66.5 89.7 96.0
CIFAR-10.1 (top-1) 92.5 95.9 97.6 98.0
CIFAR-10.2 (top-1) 88.8 91.3 93.4 94.4
WILDS-FMoW: ID test (accuracy) 28.0 73.3 73.0 74.8
WILDS-FMoW: OOD worst region accuracy 23.8 46.0 49.5 49.7
WILDS-iWildCam: ID test macro F1 15.1 52.1 55.8 55.8
WILDS-iWildCam: OOD test macro F1 15.5 39.9 46.1 46.4

Table 6. WiSE-FT improves results on ImageNet-Vid-Robust, YTBB-Robust [88], CIFAR-10.1 [83], CIFAR-10.2 [62], WILDS-FMoW
[13, 49], and WILDS-iWildCam [6, 49]. Reported numbers are percentages. This is the corresponding table for Figure 9. This table displays
results for fine-tuning only a linear classifier for ImageNet-Vid-Robust and YTBBRobust and end-to-end fine-tuning for the remainder.
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Figure 10. Comparing the weight-space ensemble f(x, (1− α) · θ0 + α · θ1) with the output-space ensemble (1−α)f(x, θ0)+α ·f(x, θ1)
when fine-tuning end-to-end with learning rate 3 · 10−5. Note that the output-space ensemble requires 2x compute.
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Figure 11. Results for the debiased variant of EMA described in Appendix E.3.2. EMA improves accuracy on both ImageNet and on the
distribution shifts, and further applying WiSE-FT to EMA solutions can improve robustness. The solutions with no EMA, decay 0.99, and
decay 0.999 are overlapping in the plot, as are the solutions with decay 0.99999 and 0.999999.
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Figure 12. Results for the variant of EMA biased towards the initialization, described in Appendix E.3.2. Varying the EMA decay β moves
along the curve produced by WiSE-FT. Applying WiSE-FT to EMA solutions moves further along the curve produced by WiSE-FT.

E.3.2 Comparison to exponential moving averages

Weight-averaging along the trajectory can improve the performance of models. For instance, Szegedy et al. [95] use a running
average of the model parameters for their Inception-v2 model. The exponential moving average (EMA) is a standard technique
for keeping a running average of model parameters and is implemented in libraries such as Optax [39] and Pytorch ImageNet
Models [101].

This section explores two variants of EMA for model parameters θ ∈ Rn. The first variant is a debiased EMA, where debiasing
is done as in Kingma & Ba [47] (Algorithm 1). For each iteration t ∈ {1, ..., T} let θt ∈ Rn be the model parameters at step
t and let µt ∈ Rn be the EMA at step t. For t = 0, µ0 ← 0, otherwise µt ← β · µt−1 + (1 − β) · θt where β is a decay
hyperparameter. The final debiased EMA is given by µT /(1− βT ). Results for various decay hyperparameters are illustrated
by Figure 11.

Next, we explore a variant of EMA that is biased towards the initialization θ0. As before, µt ← β · µt−1 + (1 − β) · θt.
However µ0 is now initialized to be θ0, instead of zeros. Moreover, at the end of fine-tuning we use the biased estimate µT .
Results for this variant are illustrated by Figure 12.

Section 4 (Figure 3) showed that decreasing learning rate, training epochs, or early stopping leads to solutions that lie below
the curve produced by WiSE-FT. On the other hand, using an exponential moving average (EMA) and varying the EMA
decay β can move along or slightly outside or along the curve produced by WiSE-FT. For instance, solutions using the second
EMA variant follow the WiSE-FT curve. Indeed, applying WiSE-FT with mixing coefficient 1− βT to the debiased EMA
variant exactly recovers the second EMA variant described above. Moreover, further applying WiSE-FT to EMA solutions
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Figure 13. Accuracy on the reference and shifted distributions of WiSE-FT and the alternatives described in Section E.3.3.

(i.e., interpolating the weights of the zero-shot model with the EMA solution) can lead to additional robustness. We also
evaluate EMA along the fine-tuning trajectory, finding improved performance under distribution shift for the variant biased
towards the initialization. For the debiased EMA, each model along the trajectory is debiased by 1/(1− βt). As shown in
Figures 11,12, evaluations along the trajectory underperform solutions generated by applying WiSE-FT.

E.3.3 Additional comparisons when fine-tuning a linear classifier

We compare against several additional alternatives when fine-tuning only a linear classifier. As this setting is computationally
cheaper compared to end-to-end, it allows for comprehensive experimentation. Many of the examined approaches exhibit
a concave trend in effective robustness plots, although WiSE-FT matches methods requiring more compute or offers better
performance (Figure 13).

Random interpolation. This method uses either the zero-shot or fine-tuned linear classifier depending on a (biased) coin flip.
For hyperparameter α ∈ [0, 1] outputs are computed as (1 − ξ) · f(x, θ0) + ξ · f(x, θ1) where ξ is a Bernoulli(α) random
variable. For this method and all others with a hyperparameter α ∈ [0, 1] we evaluate models for α ∈ {0, 0.05, 0.1, ..., 1}.

Ensembling softmax outputs. Instead of ensembling in weight space, this method combines softmax probabilities assigned
by the zero-shot and fine-tuned linear classifier. Concretely, for hyperparameter α ∈ [0, 1] outputs are computed as (1 −
α) · softmax(f(x, θ0)) + α · softmax(f(x, θ1)). This method performs comparably to weight-space ensembling but requires
slightly more compute.

Linear classifier with various regularizers. We explore fine-tuning linear classifiers with four regularization strategies:
no regularization, weight decay, L1 regularization, and label smoothing [71]. Linear classifiers are trained with mini-batch
optimization, using the AdamW optimizer [61, 76] with a cosine-annealing learning rate schedule [60]. This method is



significantly faster and less memory-intensive than the L-BFGS implementation used by Radford et al. [81] at ImageNet scale
with similar accuracy. Additional details on hyperparameters and more analyses are provided in Appendix F.3.

Two variants of this method are shown in Figure 13, one for which the the linear classifier is initialized randomly and another
for which the linear classifier is initialized with the zero-shot weights (denoted warmstart). If the convex problem is solved
then the initialization does not play a role. However we are using mini-batch optimization and, in certain cases, terminating
training before an optimum is reached.

Distillation. Network distillation [41] trains one network to match the outputs of another. We use this technique to fine-tune
while matching the outputs of the zero-shot model with weights θ0. For a hyperparameter α ∈ [0, 1] and cross-entropy loss ℓ
we fine-tune θ according to the minimization objective∑

(xi,yi)∈S tr
D

(1− α) · ℓ(f(xi, θ), yi) + α · ℓ(f(xi, θ), f(xi, θ0)) . (2)

Regularization towards zero-shot. We train a linear classifier with an additional regularization term which penalizes
movement from the zero-shot classifier’s weights. For a hyperparameter λ ∈ {1 · 10−8, 5 · 10−8, 1 · 107, ..., 5 · 102} we add
the regularization term λ ∥W −Wzero-shot∥2F where W is the linear classifier being fine-tuned. In most cases this method
performs slightly worse than distillation.

Finally, Figure 14 and Table 7 demonstrate that WiSE-FT achieves better accuracy than the recently proposed CoOp
method [112] on ImageNet and four derived distribution shifts. Instead of fine-tuning network parameters, CoOp instead learns
continuous embedding for the language prompts. We note that CoOp and WiSE-FT could be used in conjunction in future
work. We compare with the ViT-B/16 section in Table 7 of Zhou et al. [112]. For comparison we use the same CLIP model
as CoOp and also train only on 16 images per class. When end-to-end fine-tuning we use 10 epochs and learning rate 10−5.

E.4. Changes in data augmentation

In the majority of our experiments we follow Radford et al. [81] in using minimal data augmentation. However, Figure 14
recreates Figure 3 with the default ImageNet train augmentation used in PyTorch ImageNet Models [101], which includes

65 70

ImageNet (top-1, %)

55

60

65

Im
ag

eN
et

V
2

(t
op

-1
,

%
)

65 70

ImageNet (top-1, %)

65

70

75

80

Im
ag

eN
et

-R
(t

op
-1

,
%

)

65 70

ImageNet (top-1, %)

35

40

45

50

Im
ag

eN
et

S
ke

tc
h

(t
op

-1
,

%
)

65 70

ImageNet (top-1, %)

35

40

45

50

Im
ag

eN
et

-A
(t

op
-1

,
%

) Linear fit (CLIP zero-shot models)

Weight-space ensemble (linear classifier)

Weight-space ensemble (end-to-end)

CoOp

CLIP zero-shot models

Weight-space ensemble with α = 0.5

CLIP fine-tuned with a linear classifier

CLIP fine-tuned end-to-end

Figure 14. Comparing WiSE-FT with CoOp [112]. Both methods fine-tune the ViT-B/16 CLIP model on 16 examples per class of
ImageNet.



ImageNet (IN) INV2 IN-R IN-A IN Sketch

CoOp [112] 71.73 64.56 75.28 49.93 47.89
WiSE-FT (linear classifiere, α = 0.5) 73.02 65.19 77.63 49.81 49.09
WiSE-FT (end-to-end, α = 0.5) 72.38 65.29 78.47 51.07 49.72

Table 7. Comparing WiSE-FT with CoOp [112]. Both methods fine-tune the ViT-B/16 CLIP model on 16 examples per class of ImageNet.
Also see Figure 14.
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Figure 14. The robustness of fine-tuned
models varies substantially under even
small changes in hyperparameters. Apply-
ing WiSE-FT addresses this brittleness and
can remove the trade-off between accuracy
on the reference and shifted distributions.
Results shown for CLIP ViT-B/16 fine-
tuned with cosine-annealing learning rate
schedule and ImageNet data augmentation
from Pytorch ImageNet Models [101].

random cropping, horizontal flipping and color jitter. As shown in Figure 14, we find similar trends with this stronger data
augmentation. Further investigating the effect of data augmentation remains an interesting direction for future work.

E.5. Accuracy improvements on reference datasets

Beyond robustness, Figure 16 demonstrates that WiSE-FT can provide accuracy improvements on ImageNet and a number
of datasets considered by Kornblith et al. [52]: CIFAR-10, CIFAR-100 [54], Describable Textures [14], Food-101 [10],
SUN397 [103], and Stanford Cars [53]. This is surprising as standard fine-tuning optimizes for low error on the reference
distribution. Figure 16 supplements Table 2 by providing accuracy information for all mixing coefficients α.

In many application-specific scenarios, only a small amount of data is available for fine-tuning. Accordingly, we examine
the performance of WiSE-FT when only k examples per class are used for fine-tuning on the seven aforementioned datasets
(k = {1, 5, 10, 25, 50}). In contrast with Figure 16, we now fine-tune only the linear classifier allowing for comprehensive
experiments. Average results are shown in Figure 17, while Figures 18 and 19 provide a breakdown for all datasets.
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Figure 16. The accuracy of WiSE-FT (end-to-end) with mixing coefficient α on ImageNet and a number of datasets considered by Kornblith
et al. [52]: CIFAR-10, CIFAR-100 [54], Describable Textures [14], Food-101 [10], SUN397 [103], and Stanford Cars [53].
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Figure 18. WiSE-FT improves accuracy over the linear classifier and zero-shot model in the low data regime. On the x-axis we consider
k = {1, 5, 10, 25, 50} examples per class and the full training set. On the y-axis we consider the accuracy improvement of WiSE-FT over
the (top) zero-shot model, (middle) fine-tuned linear classifier, and (bottom) best of the zero-shot and fine-tuned linear classifier.
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Figure 19. WiSE-FT improves accuracy over the linear classifier and zero-shot model in the low data regime. On the x-axis we consider
k = {1, 5, 10, 25, 50} examples per class and the full training set. On the y-axis we consider the accuracy improvement of WiSE-FT over
the (top) zero-shot model, (middle) fine-tuned linear classifier, and (bottom) best of the zero-shot and fine-tuned linear classifier.
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Figure 21. WiSE-FT improves accuracy on the reference and shifted distributions for numerous distribution shifts with a smaller CLIP
ViT-B/16 model.

E.6. Robustness across scales of pre-training compute

The strong correlation between standard test accuracy and accuracy under distribution shift holds from low to high performing
models. This offers the opportunity to explore robustness for smaller, easy to run models. Our exploration began with the
lowest accuracy CLIP models and similar trends held at scale. Figure 20 shows improved accuracy under distribution shift with
minimal loss on reference performance across orders of magnitude of pre-training compute with WiSE-FT when fine-tuning a
linear classifier. Moreover, in Figure 21 we recreate the experimental results for ImageNet and five associated distribution
shifts with a smaller CLIP ViT-B/16 model, finding similar trends. Recall that unless otherwise mentioned our experiments
use the larger CLIP model (ViT-L/14@336px).

E.7. WiSE-FT and additional models

Table 8 summarizes the results for the main models we study, CLIP, ALIGN, BASIC and a ViT model pre-trained on JFT.
Details are provided in the subsequent sections.



Distribution shifts Avg Avg
IN (ref.) IN-V2 IN-R IN-Sketch ObjectNet IN-A shifts ref., shifts

CLIP ViT-B/16 [81]
Zero-shot 68.3 61.9 77.6 48.2 53.0 49.8 58.1 63.2
Standard fine-tuning 81.3 70.9 65.6 46.3 49.6 36.7 53.8 67.5
WiSE-FT (α=0.5) 81.7 72.8 78.7 53.9 57.3 52.2 63.0 72.3
WiSE-FT (opt. α) 82.6 73.2 80.1 54.1 57.7 54.6 63.5 72.3

CLIP ViT-L/14@336px [81]
Zero-shot 76.6 70.5 89.0 60.9 68.5 77.6 73.3 74.9
Standard fine-tuning 86.2 76.8 79.8 57.9 63.3 65.4 68.6 77.4
WiSE-FT (α=0.5) 86.8 79.5 89.4 64.7 71.1 79.9 76.9 81.8
WiSE-FT (opt. α) 87.1 79.5 90.3 65.0 72.1 81.0 77.4 81.9

ALIGN [45]
Zero-shot 76.4 70.1 92.1 67.9 67.2 75.9 74.6 75.5
Standard fine-tuning 88.2 80.1 88.5 69.1 61.0 76.3 75.0 81.6
WiSE-FT (α=0.5) 86.3 79.2 93.0 71.1 67.8 81.0 78.4 82.3
WiSE-FT (opt. α) 88.3 80.4 93.3 71.1 68.6 81.0 78.4 82.8

JFT pre-trained ViT-H [21]
Zero-shot 72.9 66.1 85.9 57.0 59.2 58.4 65.3 69.1
Standard fine-tuning 85.4 77.6 84.9 62.8 63.1 60.8 69.8 77.6
WiSE-FT (α=0.5) 82.9 75.4 89.3 63.8 65.8 66.2 72.1 77.5
WiSE-FT (opt. α) 85.4 77.8 89.3 64.5 66.0 66.6 72.5 78.6

BASIC-M [77]
Zero-shot 81.4 74.1 90.6 67.4 73.5 66.7 74.5 78.0
Standard fine-tuning 86.2 77.8 84.9 64.3 75.3 63.7 73.2 79.7
WiSE-FT (α=0.5) 85.6 78.5 90.2 68.6 78.0 71.1 77.3 81.4
WiSE-FT (opt. α) 86.2 78.6 91.1 68.8 78.0 71.4 77.4 81.4

BASIC-L [77]
Zero-shot 85.6 80.5 95.7 76.2 82.3 85.7 84.1 84.8
Standard fine-tuning 87.5 79.8 84.3 68.0 77.4 72.1 76.3 81.9
WiSE-FT (α=0.5) 87.9 81.6 94.5 73.6 84.1 83.2 83.4 85.7
WiSE-FT (opt. α) 87.9 82.1 96.0 76.5 84.9 86.5 85.0 86.2

Table 8. WiSE-FT accuracy on ImageNet and derived distribution shifts for various models fine-tuned end-to-end. Avg shifts displays the
mean performance among the five distribution shifts, while Avg reference, shifts shows the average of ImageNet (reference) and Avg shifts.
For optimal α, we choose the single mixing coefficient that maximizes the column.

E.7.1 ALIGN

In addition to CLIP, we show WiSE-FT to be effective for an additional zero-shot model, ALIGN [45]. Results are shown
in Figure 22 and Table 9. End-to-end fine-tuning is performed using AdamW, which we found to perform slightly better
than SGD + momentum. The model is fine-tuned for 40,000 steps with a batch size of 512, a maximum learning rate of
5× 10−6, and weight decay of 0.1. The learning rate schedule consisted of 500 steps of linear warmup followed by cosine
decay. The linear classifier is trained using L-BFGS and no label smoothing. All models are evaluated on 360× 360 pixel
crops obtained by taking the central 87.5% square region of the test set images. For end-to-end fine-tuning, we take 299× 299
pixel Inception-style random crops from the original ImageNet images during training; for linear classifier training, we use the
same preprocessing as at evaluation time. The weights of the zero-shot model are calibrated using temperature scaling on the
ImageNet training set before performing WiSE-FT.
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Figure 22. WiSE-FT applied to ALIGN [45]. We also show the effect of varying the L2 regularization strength for linear classifier fine-tuning.



Distribution shifts Avg Avg
IN (reference) IN-V2 IN-R IN-Sketch ObjectNet IN-A shifts reference, shifts

WiSE-FT, end-to-end
α=0.00 76.4 70.1 92.1 67.9 67.2 75.9 74.6 75.5
α=0.05 77.9 71.6 92.5 68.5 67.8 76.9 75.5 76.7
α=0.10 79.2 73.0 92.7 69.0 68.2 77.9 76.2 77.7
α=0.15 80.5 74.3 92.9 69.5 68.5 78.6 76.8 78.7
α=0.20 81.6 75.4 93.0 70.0 68.6 79.2 77.2 79.4
α=0.25 82.7 76.3 93.2 70.3 68.6 79.8 77.6 80.2
α=0.30 83.5 77.1 93.2 70.5 68.6 80.1 77.9 80.7
α=0.35 84.4 77.8 93.3 70.7 68.6 80.3 78.1 81.2
α=0.40 85.2 78.3 93.3 70.8 68.3 80.6 78.3 81.8
α=0.45 85.8 78.8 93.2 71.0 68.1 80.8 78.4 82.1
α=0.50 86.3 79.2 93.0 71.1 67.8 81.0 78.4 82.3
α=0.55 86.7 79.6 92.8 71.1 67.3 81.0 78.4 82.6
α=0.60 87.1 79.7 92.6 71.1 66.8 80.8 78.2 82.7
α=0.65 87.5 80.0 92.3 71.0 66.3 80.6 78.0 82.8
α=0.70 87.7 80.2 92.0 70.9 65.8 80.4 77.9 82.8
α=0.75 87.9 80.4 91.5 70.7 65.1 79.9 77.5 82.7
α=0.80 88.0 80.3 91.1 70.5 64.3 79.4 77.1 82.5
α=0.85 88.2 80.4 90.5 70.2 63.5 78.9 76.7 82.5
α=0.90 88.3 80.4 89.9 69.9 62.8 78.2 76.2 82.2
α=0.95 88.3 80.3 89.2 69.5 61.8 77.3 75.6 81.9
α=1.00 88.2 80.1 88.5 69.1 61.0 76.3 75.0 81.6

WiSE-FT, linear classifier
α=0.00 76.4 70.1 92.1 68.0 67.2 75.8 74.6 75.5
α=0.05 77.5 71.1 92.3 68.3 67.4 76.3 75.1 76.3
α=0.10 78.6 72.0 92.3 68.6 67.6 76.5 75.4 77.0
α=0.15 79.5 73.0 92.4 69.0 67.7 76.9 75.8 77.7
α=0.20 80.3 73.5 92.4 69.1 67.8 77.3 76.0 78.2
α=0.25 81.1 74.2 92.4 69.2 67.8 77.3 76.2 78.7
α=0.30 81.8 74.6 92.4 69.2 67.8 77.5 76.3 79.0
α=0.35 82.4 75.1 92.4 69.1 67.8 77.6 76.4 79.4
α=0.40 82.9 75.5 92.2 69.0 67.7 77.8 76.4 79.7
α=0.45 83.4 75.8 92.2 68.9 67.4 77.7 76.4 79.9
α=0.50 83.7 76.1 91.9 68.8 67.3 77.6 76.3 80.0
α=0.55 84.1 76.0 91.8 68.6 67.1 77.4 76.2 80.2
α=0.60 84.5 76.3 91.6 68.5 66.8 77.0 76.0 80.2
α=0.65 84.7 76.4 91.3 68.2 66.4 76.9 75.8 80.2
α=0.70 84.9 76.4 91.0 68.0 66.2 76.5 75.6 80.2
α=0.75 85.1 76.4 90.6 67.6 65.9 76.2 75.3 80.2
α=0.80 85.2 76.4 90.2 67.3 65.5 75.9 75.1 80.2
α=0.85 85.2 76.5 89.7 66.8 65.0 75.3 74.7 80.0
α=0.90 85.2 76.3 89.2 66.3 64.4 74.9 74.2 79.7
α=0.95 85.2 76.0 88.6 65.7 63.8 74.4 73.7 79.5
α=1.00 85.1 75.7 87.8 65.1 63.2 73.7 73.1 79.1

Table 9. WiSE-FT accuracy on the reference and shifted distributions for various values of the mixing coefficient α. Results shown for
ALIGN, fine-tuned end-to-end (top) and with a linear classifier (bottom). Note that α=0.0 corresponds to the zero-shot model, while
α = 1.0 corresponds to standard fine-tuning. Avg shifts displays the mean performance among the five distribution shifts, while Avg
reference, shifts shows the average of ImageNet (reference) and Avg shifts.
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Figure 23. WiSE-FT applied to ViT-H/14 [21] pre-trained on JFT. We also show the effect of varying the L2 regularization strength for
linear classifier fine-tuning.

E.7.2 JFT pre-training

We also investigate whether WiSE-FT can provide gains for models trained using a standard image classification objective on
the JFT-300M dataset [93]. Results are shown in Figure 23 and Table 10. For 973/1000 ImageNet classes, we were able to
manually identify a corresponding class from the 18K classes in JFT. We use this mapping between ImageNet and JFT classes
to obtain zero-shot ImageNet weights from the final layer weights of the pre-trained ViT-H/14 model from Dosovitskiy
et al. [21]. We also train a linear classifier on the fixed penultimate layer of the same ViT-H/14 model using L-BFGS
without label smoothing with softmax cross-entropy loss, and fine-tune end-to-end using AdamW with maximum learning rate
5 · 10−6 and weight decay 0.1 for 20k iterations at batch size 512 with sigmoid cross-entropy loss. As for CLIP models, our
learning rate schedule consists of 500 steps of linear warmup followed by cosine decay. All ViT-H/14 models are trained and
evaluated on 224× 224 pixel images. For fair evaluation, we prevent fine-tuned solutions from predicting the 27 classes with
no plausible corresponding JFT class at all points on the WiSE-FT curve but still include these points in the denominator when
computing accuracy.



Distribution shifts Avg Avg
IN (ref.) IN-V2 IN-R IN-Sketch ObjectNet IN-A shifts ref., shifts

WiSE-FT, edn-to-end
α=0.00 72.9 66.1 85.9 57.0 59.2 58.4 65.3 69.1
α=0.05 74.1 67.3 86.4 57.9 60.4 59.9 66.4 70.2
α=0.10 75.3 68.3 86.9 58.8 61.2 60.8 67.2 71.2
α=0.15 76.5 69.5 87.4 59.7 62.2 61.7 68.1 72.3
α=0.20 77.5 70.8 87.9 60.5 63.0 62.8 69.0 73.2
α=0.25 78.5 71.6 88.3 61.2 63.8 63.5 69.7 74.1
α=0.30 79.6 72.5 88.6 61.8 64.4 64.3 70.3 74.9
α=0.35 80.6 73.5 88.9 62.3 64.9 64.8 70.9 75.8
α=0.40 81.5 74.1 89.1 62.8 65.3 65.4 71.3 76.4
α=0.45 82.2 74.8 89.2 63.3 65.6 65.8 71.7 77.0
α=0.50 82.9 75.4 89.3 63.8 65.8 66.2 72.1 77.5
α=0.55 83.4 75.9 89.3 64.0 66.0 66.3 72.3 77.8
α=0.60 83.9 76.4 89.3 64.3 66.0 66.6 72.5 78.2
α=0.65 84.3 76.8 89.1 64.5 65.9 66.4 72.5 78.4
α=0.70 84.7 77.1 88.9 64.5 65.8 66.0 72.5 78.6
α=0.75 84.9 77.4 88.5 64.5 65.6 65.3 72.3 78.6
α=0.80 85.2 77.6 88.1 64.4 65.2 64.8 72.0 78.6
α=0.85 85.3 77.8 87.5 64.1 64.7 63.8 71.6 78.4
α=0.90 85.4 77.8 86.8 63.7 64.4 63.2 71.2 78.3
α=0.95 85.4 77.8 85.9 63.3 63.9 62.2 70.6 78.0
α=1.00 85.4 77.6 84.9 62.8 63.1 60.8 69.8 77.6

WiSE-FT, linear classifier
α=0.00 72.9 66.1 85.9 57.0 59.2 58.4 65.3 69.1
α=0.05 74.0 67.3 86.3 57.5 60.3 59.2 66.1 70.0
α=0.10 75.1 68.3 86.7 58.1 61.2 60.1 66.9 71.0
α=0.15 76.1 69.1 87.0 58.5 61.8 60.8 67.4 71.8
α=0.20 77.1 70.0 87.3 59.0 62.4 61.1 68.0 72.5
α=0.25 78.0 71.0 87.5 59.5 63.0 61.6 68.5 73.2
α=0.30 78.8 71.7 87.7 59.8 63.3 61.9 68.9 73.8
α=0.35 79.6 72.2 87.8 60.1 63.6 62.2 69.2 74.4
α=0.40 80.3 72.9 87.9 60.4 63.6 62.3 69.4 74.8
α=0.45 80.9 73.4 88.0 60.5 63.8 62.5 69.6 75.2
α=0.50 81.5 73.8 88.0 60.7 63.9 62.5 69.8 75.7
α=0.55 81.9 74.1 88.0 60.8 63.7 62.5 69.8 75.8
α=0.60 82.4 74.4 87.9 60.8 63.5 62.4 69.8 76.1
α=0.65 82.8 74.7 87.8 60.7 63.2 62.3 69.7 76.2
α=0.70 83.1 75.0 87.6 60.7 63.0 62.0 69.7 76.4
α=0.75 83.4 75.2 87.4 60.5 62.7 61.8 69.5 76.5
α=0.80 83.6 75.4 87.1 60.2 62.4 61.4 69.3 76.4
α=0.85 83.7 75.4 86.7 59.8 61.9 60.7 68.9 76.3
α=0.90 83.9 75.4 86.3 59.4 61.4 60.3 68.6 76.2
α=0.95 84.0 75.3 85.7 58.9 61.0 59.4 68.1 76.0
α=1.00 84.0 75.1 85.1 58.3 60.4 58.8 67.5 75.8

Table 10. WiSE-FT accuracy on the reference and shifted distributions for various values of the mixing coefficient α. Results shown for
ViT-H/14 pre-trained on JFT-300M, fine-tuned end-to-end (top) and with a linear classifier (bottom). Note that α=0.0 corresponds to the
zero-shot model, while α = 1.0 corresponds to standard fine-tuning. Avg shifts displays the mean performance among the five distribution
shifts, while Avg reference, shifts shows the average of ImageNet (reference) and Avg shifts.

E.7.3 BASIC

We apply WiSE-FT to BASIC [77], fine-tuning both the image and text encoder with a contrastive loss on half of the ImageNet
training data, as in Pham et al. [77]. Results are shown in Figure 24 and Tables 11 and 12.
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Figure 24. WiSE-FT improves accuracy relative to the fine-tuned model on ImageNet and five derived distribution shifts for BASIC-L [77]
using ImageNet class names to construct the zero-shot classifier.



Distribution shifts Avg Avg
IN (ref.) IN-V2 IN-R IN-Sketch ObjectNet IN-A shifts ref., shifts

α=0.00 81.4 74.1 90.6 67.4 73.5 66.7 74.5 78.0
α=0.05 82.2 75.0 90.8 67.9 74.6 67.8 75.2 78.7
α=0.10 82.8 75.9 90.9 68.2 75.4 68.5 75.8 79.3
α=0.15 83.3 76.4 91.0 68.4 76.2 69.3 76.3 79.8
α=0.20 83.8 76.8 91.0 68.6 76.9 70.0 76.7 80.2
α=0.25 84.1 77.1 91.1 68.7 77.4 70.5 77.0 80.5
α=0.30 84.5 77.4 91.0 68.8 77.7 70.8 77.1 80.8
α=0.35 84.9 77.9 90.8 68.8 77.8 71.3 77.3 81.1
α=0.40 85.2 78.1 90.7 68.7 77.9 71.3 77.3 81.2
α=0.45 85.4 78.3 90.5 68.7 78.0 71.4 77.4 81.4
α=0.50 85.6 78.5 90.2 68.6 78.0 71.1 77.3 81.4
α=0.55 85.8 78.5 89.9 68.4 78.0 70.6 77.1 81.4
α=0.60 85.9 78.4 89.5 68.1 78.0 70.5 76.9 81.4
α=0.65 86.0 78.5 89.1 67.7 77.8 70.3 76.7 81.3
α=0.70 86.1 78.5 88.8 67.3 77.6 69.7 76.4 81.2
α=0.75 86.2 78.6 88.4 67.0 77.3 69.2 76.1 81.2
α=0.80 86.2 78.5 87.8 66.6 77.1 68.3 75.7 81.0
α=0.85 86.2 78.5 87.2 66.0 76.7 67.5 75.2 80.7
α=0.90 86.2 78.4 86.5 65.5 76.2 66.4 74.6 80.4
α=0.95 86.2 78.2 85.7 65.0 75.8 65.3 74.0 80.1
α=1.00 86.2 77.8 84.9 64.3 75.3 63.7 73.2 79.7

Table 11. WiSE-FT accuracy on the reference and shifted distributions for various values of the mixing coefficient α. Results shown for
BASIC-M using ImageNet class names. Note that α=0.0 corresponds to the zero-shot model, while α = 1.0 corresponds to standard
fine-tuning. Avg shifts displays the mean performance among the five distribution shifts, while Avg reference, shifts shows the average of
ImageNet (reference) and Avg shifts.



Distribution shifts Avg Avg
IN (ref.) IN-V2 IN-R IN-Sketch ObjectNet IN-A shifts ref., shifts

α=0.00 85.6 80.5 95.7 76.2 82.3 85.7 84.1 84.8
α=0.05 86.4 81.2 95.8 76.5 83.6 86.0 84.6 85.5
α=0.10 86.9 81.7 96.0 76.5 84.3 86.5 85.0 86.0
α=0.15 87.3 81.9 96.0 76.4 84.6 86.3 85.0 86.2
α=0.20 87.5 82.1 95.9 76.1 84.8 86.1 85.0 86.2
α=0.25 87.6 82.1 95.7 75.8 84.9 86.0 84.9 86.2
α=0.30 87.7 82.1 95.6 75.4 84.9 85.7 84.7 86.2
α=0.35 87.8 82.0 95.4 75.0 84.9 84.9 84.4 86.1
α=0.40 87.8 81.8 95.1 74.5 84.7 84.5 84.1 85.9
α=0.45 87.8 81.6 94.9 74.0 84.5 83.8 83.8 85.8
α=0.50 87.9 81.6 94.5 73.6 84.1 83.2 83.4 85.7
α=0.55 87.8 81.4 94.1 73.1 83.9 82.6 83.0 85.4
α=0.60 87.9 81.3 93.6 72.7 83.6 82.0 82.6 85.2
α=0.65 87.9 81.3 93.0 72.3 83.2 81.3 82.2 85.1
α=0.70 87.8 81.2 92.3 71.8 82.7 80.5 81.7 84.8
α=0.75 87.8 81.0 91.5 71.4 82.0 79.6 81.1 84.4
α=0.80 87.9 81.0 90.4 70.7 81.3 78.5 80.4 84.2
α=0.85 87.8 80.8 89.1 70.1 80.6 77.5 79.6 83.7
α=0.90 87.7 80.6 87.7 69.5 79.6 76.1 78.7 83.2
α=0.95 87.5 80.3 86.1 68.8 78.5 74.5 77.6 82.5
α=1.00 87.5 79.8 84.3 68.0 77.4 72.1 76.3 81.9

Table 12. WiSE-FT accuracy on the reference and shifted distributions for various values of the mixing coefficient α. Results shown
for BASIC-L using ImageNet class names. Note that α=0.0 corresponds to the zero-shot model, while α = 1.0 corresponds to standard
fine-tuning. Avg shifts displays the mean performance among the five distribution shifts, while Avg reference, shifts shows the average of
ImageNet (reference) and Avg shifts.
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Figure 25. Ensembling with a zero-shot model improves accuracy under distribution shift of an independently trained model. (Left)
Output-space ensembling with an independently trained model (NoisyStudent EfficientNet-B6) with comparable performance to the
end-to-end fine-tuned model on the reference distribution. (Right) Output-space ensembling with an independently trained model with
strong performance on the reference distribution (NoisyStudent EfficientNet-L2). Results averaged over the five distribution shifts as in
Figure 1.

E.8. Ensembling zero-shot CLIP with independently trained models

So far we have shown that a zero-shot model can be used to improve performance under distribution shift of the derived
fine-tuned model. Here, we investigate whether this improvement is specific to fine-tuned models. On the contrary, we find that
the performance under distribution shift of independently trained models improves when ensembling with robust models. Note
that in the general case where the models being ensembled have different architectures, we are unable to perform weight-space
ensembling; instead, we ensemble the outputs of each model. This increases the computational cost of inference, in contrast to
the results shown in Section 4.

Concretely, we ensemble zero-shot CLIP with two Noisy Student EfficientNet models [96, 104]: (i) EfficientNet-B6 (Figure
25, left), with performance on the reference distribution comparable to the end-to-end fine-tuned CLIP model; and (ii)

Distribution shifts Avg Avg
IN (reference) IN-V2 IN-R IN-Sketch ObjectNet IN-A shifts reference, shifts

CLIP
End-to-end fine-tuned 86.2 76.8 79.8 57.9 63.3 65.4 68.6 77.4
WSE (α=0.75) 87.0 78.8 86.1 62.5 68.1 75.2 74.1 80.5
WSE (α=0.5) 86.8 79.5 89.4 64.7 71.1 79.9 76.9 81.8
WSE (α=0.4) 86.2 79.2 89.9 65.0 71.9 80.7 77.3 81.8
WSE (optimal α) 87.1 79.5 90.3 65.0 72.1 81.0 77.6 82.3

NS EfficientNet-B6
No ensemble 86.5 77.7 65.6 47.8 58.3 62.3 62.3 74.4
OSE (α=0.75) 87.0 78.8 86.4 56.7 66.5 75.9 72.9 80.0
OSE (α=0.5) 86.2 78.7 89.2 63.8 69.3 78.6 75.9 81.1
OSE (α=0.4) 84.3 77.2 89.5 63.8 69.7 79.0 75.8 80.0
OSE (optimal α) 87.1 79.3 89.7 63.8 69.7 79.3 76.4 81.8

NS EfficientNet-L2
No ensemble 88.3 80.8 74.6 47.6 69.8 84.7 71.5 79.9
OSE (α=0.75) 88.6 81.6 88.0 53.4 72.2 87.1 76.5 82.5
OSE (α=0.5) 87.4 80.6 90.2 63.4 73.1 86.5 78.8 83.1
OSE (α=0.4) 85.2 78.5 90.5 63.9 72.6 86.0 78.3 81.8
OSE (optimal α) 88.6 81.7 90.5 63.9 73.1 87.1 79.3 83.9

Table 13. Accuracy of various independently trained models ensembled with CLIP on ImageNet and derived distribution shifts. OSE
denotes output-space ensembling. Avg shifts displays the mean performance among the five distribution shifts, while Avg reference, shifts
shows the average of ImageNet (reference) and Avg shifts.



EfficientNet-L2 (Figure 25, right), the strongest model available on PyTorch ImageNet Models [101]. In both cases, we
observe substantial improvements from ensembling—13.6 pp and 6.9 pp in average accuracy under distribution shift without
reducing performance on the reference dataset. Further results are shown in Table 13.

F. Experimental details
F.1. CLIP zero-shot

This section extends Section 2 with more details on inference with the CLIP zero-shot model. First, in all settings we use the
CLIP model ViT-L/14@336px, except when explicitly mentioned otherwise. Second, CLIP learns a temperature parameter
which is factored into the learned weight matrix Wzero-shot described in Section 2. Finally, to construct Wzero-shot we ensemble
the 80 prompts provided by CLIP at https://github.com/openai/CLIP. However, we manually engineer prompts
for five datasets: WILDS-FMoW, WILDS-iWildCam, Stanford Cars, Describable Textures and Food-101, which are found in
the code.

F.2. End-to-end fine-tuning

Two important experimental details for end-to-end fine-tuning are as follows:

• We initialize the final classification layer with the zero-shot classifier used by CLIP. We scale the zero-shot classifier
weights by the temperature parameter of the pre-trained CLIP model at initialization, and do not include a temperature
parameter during fine-tuning.

• As the zero-shot classifier expects the outputs of the image-encoder g to be normalized, we continue to normalize the
outputs of g during fine-tuning.

When fine-tuning end-to-end, unless otherwise mentioned, we use the AdamW optimizer [61, 76] and choose the largest
batch size such that the model fits into 8 GPUs (512 for ViT-B/16). Unless otherwise mentioned, we use the default
PyTorch AdamW hyperparameters β1 = 0.9, β2 = 0.999, ϵ = 10−8, weight decay of 0.1 and a cosine-annealing learning rate
schedule [60] with 500 warm-up steps. Unless otherwise mentioned we use a learning rate of 3× 10−5, gradient clipping
at global norm 1 and fine-tune for a total of 10 epochs. Additionally, unless otherwise mentioned we use the same data
augmentations as [81], randomly cropping a square from resized images with the largest dimension being 336 pixels for
ViT-L/14@336px and 224 for the remaining models.

F.3. Fine-tuning a linear classifier

This section extends the description of linear classifier training from Appendix E.3 with details on hyperparameters and
additional analyses. In each of the four regularization strategies—no regularization, weight decay, L1 regularization, and label
smoothing—we run 64 hyperparameter configurations. For each trial, mini-batch size is drawn uniformly from {64, 128, 256}
and learning rate is set to 10−β with β chosen uniformly at random from the range [0, 6]. Hyperparameters for each
regularization strategy are as follows: (i) The weight decay coefficient is set to 10−λ where λ is chosen uniformly at random
from [0, 4] for each trial; (ii) The L1 regularization coefficient is set to 10−λ where λ is chosen uniformly at random from
[4, 8] for each trial; (iii) The label smoothing [71] coefficient λ is chosen uniformly at random from [0, 0.25] for each trial.
The linear classifier used for ensembling attains the best performance in-distribution. The hyperparameters from this trial are
then used in the distillation and regularization experiments described in Appendix E.3. In the low-data regime (Section E.5),
this process is repeated for each k and dataset.

When training linear classifiers with k images per class as in Section E.5 the maximum number of epochs T is scaled
approximately inversely proportional to the amount of data removed (e.g., with half the data we train for twice as many epochs
so the number of iterations is consistent). To choose the T we use default PyTorch AdamW hyperparameters (learning rate
0.001, weight decay 0.01) and double the number of epochs until performance saturates. For each random hyperparameter run
we choose the epochs uniformly from {1, ..., T}.

F.4. ObjectNet

The zero-shot models in Table 1 use the ImageNet class names instead of the ObjectNet class names. However, this adaptation
to class shift improves performance by 2.3% [81]. Out of the five datasets used for the majority of the experiments in Section 3,
ObjectNet is the only dataset for which this is possible. In Figure 26 we compare weight-space ensembles with and without
adaptation to class shift.

https://github.com/openai/CLIP
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Figure 26. Effective robustness scatter plots for ObjectNet, with and without adapting to class shift. Left: Using ImageNet class names to
construct the zero-shot classifier. Right: Using ObjectNet class names to construct the zero-shot classifier.

G. Diversity measures
Let S = {(x(i), y(i)), 1 ≤ i ≤ N} be a classification set with input data x(i) and labels y(i) ∈ {1, ..., C}, where C is
the number of classes. A classifier f is a function that maps inputs x to logits f(x) ∈ RC , yielding predictions ŷ =
argmax1≤c≤C f(x)c. We consider measures of diversityM(f, g,S) between two classifiers f and g and the dataset S. For

simplicity, ŷ(i)f is used to denote the predictions from classifier f given inputs x(i) (and similarly for g).

Prediction Diversity (PD). One of the most intuitive ways to measure diversity between pairs of classifiers is to compute the
fraction of samples where they disagree while one is correct [42, 91]. Formally, the prediction diversity PD is defined as:

PD(f, g,S) = 1

N

∑
1≤i≤N

1 [df ∨ dg] , (3)

where
df =

(
ŷ
(i)
f = y(i) ∧ ŷ(i)g ̸= y(i)

)
. (4)

dg =
(
ŷ
(i)
f ̸= y(i) ∧ ŷ(i)g = y(i)

)
. (5)

Cohen’s Kappa Complement (CC). Cohen’s kappa coefficient is a measure of agreement between two annotators [68].
Here, we use it’s complement as a diversity measure between two classifiers:

CC(f, g,S) = 1− po − pe
1− pe

=
1− po
1− pe

, (6)

where pe is the expected agreement between the classifiers and po is the empirical probability of agreement. Formally, if nf,k

is the number of samples where classifier f predicted label k (i.e. nf,k =
∑

1≤i≤N 1[ŷif = k]), then:

pe =
1

N2

∑
1≤c≤C

nf,cng,c, po =
1

N

∑
1≤i≤N

1[ŷif = ŷig] (7)

KL Divergence (KL). The Kullback-Leibler divergence measures how different a probability distribution is from another.
Let p(i)f = softmax

(
f(x(i))

)
for a classifier f , and let p(i)f,c be the probability assigned to class c. We consider the average

KL-divergence over all samples as a diversity measure:

KL(f, g,S) = 1

N

∑
1≤i≤N

∑
1≤c≤C

p
(i)
f,c log

(
p
(i)
f,c

p
(i)
g,c

)
. (8)



Centered Kernel Alignment Complement (CKAC). CKA is a similarity measure that compares two different sets of
high-dimensional representations [51]. It is commonly used for comparing representations of two neural networks, or
determining correspondences between two hidden layers of the same network. CKA measures the agreement between two
matrices containing the pair-wise similarities of all samples in a dataset, where each matrix is constructed according to the
representations of a model. More formally, let S ∈ RN×d denote the d-dimensional features for all samples in a dataset S,
pre-processed to center the columns. For two models f and g yielding similarity matrices Sf and Sg , CKA is defined as:

CKA(f, g,S) = ||S⊤
g Sf ||2F

||S⊤
f Sf ||F ||S⊤

g Sg||F
, (9)

where ||S||F denotes the Frobenius norm of the matrix S. Larger CKA values indicate larger similarities between the
representations of the two models, and thus, smaller diversity. We define the diversity measure CKAC as:

CKAC = 1− CKA. (10)

Note that CKAC is computationally expensive to compute for large datasets. For this reason, in our experiments with
distributions larger than 10,000 samples, we randomly sample 10,000 to compute this measure.

Diversity across different architectures We extend Figure 5 to show results for all combinations of diversity measures,
datasets, and CLIP models. Similarly to before, the baselines compares models with the same encoder, with two linear
classifiers trained on different subsets of ImageNet with half of the data. Results are shown in Figures 27-30.
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Figure 27. Prediction Diversity (PD) for multiple datasets and CLIP models (Equation 3).
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Figure 28. Cohen’s Kappa Complement (CC) for multiple datasets and CLIP models (Equation 6).
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Figure 29. Average KL Divergence (KL) for multiple datasets and CLIP models (Equation 8).
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Figure 30. Central Kernel Alignment Complement (CKAC) for multiple datasets and CLIP models (Equation 10).



H. When do weight-space ensembles approximate output-space ensembles?
In practice we observe a difference between weight-space and output-space ensembling. However, it is worth noting that
these two methods of ensembling are not as different as they initially appear. In certain regimes a weight-space ensemble
approximates the corresponding output-space ensemble—for instance, when training is well approximated by a linear
expansion, referred to as the NTK regime [44]. Fort et al. [24] find that a linear expansion becomes more accurate in the later
phase of neural network training, a phase which closely resembles fine-tuning.

Consider the set Θ = {(1− α)θ0 + αθ1 : α ∈ [0, 1]} consisting of all θ which lie on the linear path between θ0 and θ1.

Proposition 1. When f(θ) = f(θ0) +∇f(θ0)⊤(θ − θ0) for all θ ∈ Θ, the weight- and output-space ensemble of θ0 and θ1
are equivalent.

Proof. We may begin with the weight-space ensemble and retrieve the output-space ensemble

f((1− α)θ0 + αθ1) (11)

= f(θ0) +∇f(θ0)⊤((1− α)θ0 + αθ1 − θ0) (12)

= f(θ0) + α∇f(θ0)⊤(θ1 − θ0) (13)

= f(θ0) + α∇f(θ0)⊤(θ1 − θ0) + αf(θ0)− αf(θ0) (14)

= (1− α)f(θ0) + α
(
f(θ0) +∇f(θ0)⊤(θ1 − θ0)

)
(15)

= (1− α)f(θ0) + αf(θ1) (16)

where the first and final line follow by the linearity assumption.


