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Figure S-1. Illustrations of network architectures. c-kasb
means a convolutional layer with a c-channel output using a ker-
nel size a and stride b. d in the linear layer means to output
a d-dimension vector. The first graphic contains our supervised
learning framework with ¢, and ¢ge.. The unsupervised setting
contains @g, Gdis, Pc, Po (the same structure as in the supervised
setting), and the image-to-3DMM module.

A. Overview

This supplementary document is organized as follows.
In Sec. B, we show detailed network architecture for both
supervised and unsupervised learning scenarios. In Sec.
C, we describe details about our Voxceleb-3D training and
evaluation split. In Sec. D, we respond to Q1-Q4 using
our CMP- supervised learning setting. In Sec. E, we intro-
duce both point-based and region-based metrics and com-
pare results produced from our CMP with those from base-
lines. In Sec. F, we provide two simple non-network-based
solutions as references using averaged face meshes in the
training data as the predictions. In Sec. G, we show the
robustness of head pose estimation of the expert network.
In Sec. H, we present more results from our unsupervised
setting. In Sec. I, we describe more on the applications of

the cross-modal learning from voices to 3D faces. In Sec.
J, we describe limitations of this work.

B. Network Architecture

We exhibit detailed network architectures for both super-
vised and unsupervised settings of our CMP in Fig. S-1.

C. Voxceleb-3D Training/Evaluation Split

We display details of the training/evaluation split in Ta-
ble S-1. As described in our paper Sec. 3.2 and Sec. 4-
Datasets, Voxceleb-3D inherited from Voxceleb and VG-
GFace contains 1225 people. Names starting with A to E
are included in the evaluation set, and the others are in the
training set. The training set contains as many utterances
we can fetch from Voxceleb, and the evaluation set contains
three utterances for each person, amounting to a total of
0.9K utterances. Face images are not included in the evalu-
ation set because they cannot be used to calculate numerical
3D face errors, and thus we put a ’-’ mark in the table.

For 3D faces, we fit landmarks from images and obtain
the optimized 3DMM and reconstructed 3D faces, as de-
scribed in our paper Sec. 3.2 and Sec. 4-Datasets. There are
several images associated with a person in VGGFace. We fit
3DMM parameters and reconstruct 3D meshes from these
images. To create reference face meshes for a person to ful-
fill quantitative evaluation, we manually select one neutral
3D face from the pool that best fits 2D facial outlines on im-
ages. Therefore, there are 301 3D face meshes represented
in 3DMM parameters for each person as the reference.

At test time, three utterances for each identity are used
as inputs to reconstruct 3D faces. Those three predicted
models are then used to compute quantitative results with
the picked reference model for each identity.

Note that Voxceleb collects speech clips of interviews or
talks for celebrities scraped from the web, and only gender
labels are available in Voxceleb. Other features may require
self-disclosure or are hard to trace, such as ages at the time
of speaking, and thus are unavailable.

D. Response to Q1-Q4 using Supervised CMP

Following main paper Sec.4.1-Analysis, we present the
counterpart of Al1-A4 using our supervised framework.

A1l-Face meshes from our supervised learning. In Fig.
S-3, we present four types of face shapes — skinny, wide,
regular, and slim — and show the reference images. The
produced face meshes from our supervised learning setting
exhibit the model’s ability to produce various types of face
shapes and are also consistent with the reference images,
which are provided for shape identification purposes. This



Table S-1. Voxceleb-3D training/evaluation split. We provide
data split details including number of utterances, number of face
images, number of 3DMM parameters (equivalent to the number
of 3D meshes), number of male and female, and number of people.
Images for the evaluation set are not used for quantitative evalua-
tion, and thus we mark the number ’-’. We also display pie charts
for gender below the table.

Dataset Training | Evaluation
# of utterances 113K 0.9K
# of face images 107K -
# of 3DMM param (face mesh) 107K 301
# of male/female 485/439 182/119
# of people 924 301
Female

Female
Male oL

Male

(a) Training split (b) Evaluation split
illustration also validates our findings in Table 1 of the pa-
per: the lowest absolute ratio error is ear-to-ear ratio (ER)
distance, which is associated with overall face shapes, in-
dicating wider or thinner faces. We further investigate the
proximity of the illustrated four face types, we calculate the
parameter space Euclidean distances and show the confu-
sion matrix in Fig. S-2.

A2-Mesh prediction coherence from our supervised
learning. In Fig. S-4, we display coherence of test-time
face mesh predictions from our supervised learning setting.
We use different utterances from the same speaker at dif-
ferent time-step as inputs to produce the meshes. In Fig.
S-4, one can observe from, for example, jaw widths that
the output meshes are different for the two speakers; by
contrast, meshes for the same speaker are highly coherent.
These results demonstrate that our training strategy suc-
cessfully predicts coherent geometry for the same speaker
and can predict different topologies for different identities.
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Figure S-2. Proximity for four face types. We show (A) a con-
fusion matrix and (B) distances with mean face shape in 3DMM
parameter space to help comprehension for the face type variation
in Fig. S-3.

Finally, this coherence illustration also implies advantages
over previous voice-to-face methods that work on the im-
age domain [3, |12]. Their generation includes variations of
background, hairstyles, and the rest. In contrast, Our re-
sults exclude these variations and focus on facial geometry
to validate the correlation between face shapes and voices.

A3+A4-Comparison against the baseline and the ma-
jor improvement from our supervised learning. We fur-
ther compare against Base-2 (See Sec.4-Baseline in the pa-
per: the cascaded pretrained blocks). One reference face,
one 3D face mesh produced by our method, and one by
Base-2 are presented in Fig. S-5. For the example on the
left, the person of interest has a wider jawbone, and the
mesh produced from our method also shows a similar trait.
On the right, the image shows a wider face shape and ap-
parent cheeks. Our 3D model also displays a similar shape,
but Base-2 shows a much thinner face. Our mesh can reflect
the wideness of faces, which corresponds to our findings in
paper Table 1 that the major improvement voice can hint is
ER (ear-to-ear ratio). In summary, we use the above visual
results to show that the supervised learning of the analy-
sis framework is effective. Fig. S-3 shows the output face
meshes have similar overall face shapes to the reference im-
ages, which shows the model’s ability for various types of
faces and is validated in Fig. S-2. Fig. S-4 shows our su-
pervised method can predict coherent face shapes. Fig. S-5
shows the output face models are more similar to the ref-
erence than Base-2 in terms of overall face shapes, which
again validates the ER improvements shown in the paper
Table 1.
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Figure S-3. Visualization of predicted 3D face meshes from our supervised learning. We display four face shapes, skinny, wide,
regular, and slim, and their reference images to show the shape correspondence. References are provided to identify face shapes of the

person of interest.
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Figure S-4. Inference coherence of meshes produced from our CMP- supervised learning.
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Figure S-5. Comparison of output face meshes from our CMP of the supervised learning and Base-2. In case (a), our mesh shows a

more squared face with a wider jawbone, but Base-2 only shows a slim face. Reference face in (b) is wider and bears apparent cheeks, and
our result is much more similar to the reference.




Figure S-6. Illustration of commonly-used 68-point 3D facial
landmarks.

E. Point-based and Region-based Metrics

Normalized Mean Error (NME, point-based) of facial
landmarks. BFM Face annotates 68 points 3D facial land-
mark points that lie on the eyes, nose, mouth, and face out-
lines (shown in Fig. S-6). We calculate the NME of the
landmark point set between the predicted and reference 3D
face meshes, i.e., first calculate the Euclidean distance of
two landmark sets and then normalize the distance by the
face size (square root of face width x length).

Results in Table S-2 show NME for 3D facial landmark
alignment. Quantitative results under this metric show im-
provements, but the gains are smaller. It is because most fa-
cial landmarks concentrate on eyes, nose, and mouth parts
that naturally bear more minor deformations across people.
For example, the nose tip and mid-dorsum usually lie on
the centerline of faces, and alar base and columella are lo-
cated around them closely. (See Fig. S-7 for the definition
of these physiology terms.)

Point-to-Plane Root Mean Square Error (Point-to-Plane
RMSE, region-based). We follow the surface registration
for 3D models using the popular iterative closest point (ICP)
[9] algorithm to align the predicted and reference meshes.
We then calculate point-to-plane RMSE. Registration for
the holistic face and facial parts (illustrated in Fig. S-8) are
considered and shown in Table S-3 and Table S-4. Both su-
pervised and unsupervised CMP outperforms the baselines
in either holistic or part-based registrations. These evalua-
tions indicate the capability of cross-modal learning, from
voice inputs to 3D face outputs.

F. Simple Oracles

We provide numerical results of simple oracles as other
baselines. Oracle (1): We take average 3D faces in the

Mid-Dorsum
Nose tip
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Figure S-7. Illustration of physiology terms in Sec. E.

Table S-2. NME for point-based metric study. 68 facial land-
marks annotated in BFM Face [7] are used for measurements.

Landmark | Base-1 | Base-2 CMP- CMP- un-
Alignment supervised | supervised
NME 0.2979 | 0.2969 0.2723 0.2904

Table S-3. Point-to-Plane RMSE study. ICP is used to align
the predicted and reference meshes. We calculate point-to-plane
RMSE after ICP.

Holistic Base-1 | Base-2 CMP- CMP- un-
Registration supervised | supervised
RMSE 1.357 1.348 1.210 1.312

Table S-4. Part-based point-to-plane RMSE study.

Part Base-1 | Base-2 | CMP- su- CMP- un-
Registration pervised supervised
Left Eye 0.3961 | 0.3945 0.3517 0.3779
Right Eye 0.3667 | 0.3656 0.3349 0.3488

Nose 0.5258 | 0.5250 0.5141 0.5177
Mouth 0.3466 | 0.3435 0.2958 0.3149
Left Cheek 0.4748 | 0.4735 0.4654 04711
Right Cheek | 0.5078 | 0.5061 0.4916 0.4919

Figure S-8. Illustration of regions. We show regions of the left
eye, right eye, nose, mouth, left cheek, and right cheek that are
used in the part-based point-to-plane evaluation using ICP in our
paper Table 3.

Voxceleb-3D training set and use the mean shape directly as
predictions for testing data; Oracle (2): We take the mean
3D face for the male/female group in the training set and
use the mean shape for male/female as predictions at test
time. The following Table S-5 shows results using line-
based (Mean ARE), point-based (NME), and region-based
(RMSE) metrics, compared with Base-2 described in pa-
per paper Sec.4-Baseline. Simple oracles perform worse
than Base-2, which means directly taking average faces is
naive and weaker than the network-based solutions. This
validates our baseline construction, and our CMP frame-
work can further predict more accurate face geometry from
voices for each person of interest.

G. Pose from the Pretrained Expert

Here we study the robustness of head poses estimated
from the expert, which helps our visualization (in Fig.7-



Table S-5. Oracle results. We show quantitative evaluations of
simple oracles explained in Sec. F.

Metrics Type Oracle(1) Oracle(2) Base-2
Mean ARE line 0.0319 0.0311 0.0302
NME point 0.3058 0.3021 0.2969
RMSE region 1.540 1.529 1.348

10 of the paper) of laying 3D face meshes onto images to
show the fitness. SynergyNet [13] as an expert used in the
unsupervised framework predicts 3DMM parameters (o
and a.) as pseudo-groundtruth based on images synthesized
from GAN. Here we verify the robustness of pose estima-
tion from the expert. As illustrated in our paper Fig. 8, syn-
thesized faces from GAN are almost frontal because face
images in VGGFace [5] for GAN-training are with small
poses. We adopt widely-used AFLW2000-3D [15] includ-
ing 2K in-the-wild face images to examine the performance
of head pose estimation. Then, we calculate the mean ab-
solute error (MAE) for three estimated Euler angles (yaw,
pitch, roll). MAE is 1.49 degrees for faces whose yaw an-
gle (left/right turns) lies in [-15°, 15°]. This result justifies
the robustness of head pose estimation from the pretrained
expert.

H. Ablation Study on Knowledge Distillation

We conduct an extensive survey for the performance of
various recent KD strategies on our unsupervised frame-
work. We include vanilla KD [2], Attention [14], SP [11],
Correlation [8], RKD [4], CRD [10], VID [1], PKT [6], and
train our unsupervised framework with different Lgp. Here
we show the results in Table S-6. We find that more recent
and advanced KD methods attain similar results. For ex-
ample, RKD, CRD, and PKT have very close performance,
compared with earlier methods such vanilla version or us-
ing attention map similarity. Therefore, the study validates
our adoption of conditional probability in our paper Eq.(4)',
introduced in PKT [6].

Further, we exhibit more qualitative comparisons in Fig.
S-9 extending Fig. 10 of the main paper.

I. Applications of Voice-to-3D-Face Task

We focus on the analysis that purposes to validate the
correlation between voice and 3D face geometry. Here we
describe more on application sides, where our work has po-
tential at:

1. Our work can be used for public security, such as
recovering the face shape of the unheard speech of a suspect
or a masked robber.

IThe scaled and shifted cosine similarity is Keosine(zi,z5) =
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Figure S-9. Qualitative comparison between our unsupervised
CMP and the baseline. This figure presents more results that
extend Fig. 10 of the main paper.

2. Our work can generate personal avatars in gaming or
virtual reality systems: it is helpful to create a rough 3D
face model from voices as the initialization, and users can
refine its shape based on one’s preference.

3. 3D faces from voice can potentially provide another
verification mode for person identification other than speech
and face image verification.

J. Limitations

Our work focus on the analysis between voices and 3D
faces, and generating high-quality meshes is not our aim.
In fact, using voices as inputs to produce face meshes has
its inherent limitations since our face wideness might be
gleaned from voices from our intuition, but more subtle de-
tails, such as bumps or wrinkles, cannot be hinted at from
this modality. We target at analysis between one’s normal
voices and face shapes and utilize Voxceleb as the speech
source, which is primarily interviews or talks. As pointed
out in main paper Sec.5- Ethical statement, more implicit
factors like talking after drinking or abnormal health con-
ditions may affect the analysis, but this requires large data
corpse from a medical or physiological view to further val-
idate these effects.
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