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1. More Hyper Parameter Analysis

Different Weights for Contrastive Loss. The influence of
our proposed cross-patch dense contrastive learning module
depends on the weight (wcontr) of contrastive loss (Lcontr).
With low wcontr, the network cannot efficiently exert the ef-
fect of contrastive learning, while high wcontr may corrupt
the optimization of learning rate. Therefore, the weight set-
ting for contrastive loss is very important. Table 1 shows
our ablation study on different wcontr. We can observe that,
while the wcontr is set as 0.1, our method achieves the best
performance on two histopathoslogic datasets.

Dataset wcontr DC(%) JC(%) ACC(%) SP(%) SE(%)

DSB

0 86.40 77.68 96.84 98.06 87.06
0.01 86.61 78.25 96.84 97.85 88.22
0.05 86.98 78.74 96.99 98.12 89.20
0.1 87.49 79.35 96.99 98.38 88.43
0.5 86.12 77.18 96.53 98.33 86.13
1 85.30 76.40 96.16 97.80 87.59

MoNuSeg

0 75.16 60.73 89.47 90.82 84.29
0.01 75.28 60.98 89.20 89.62 87.85
0.05 75.71 61.46 89.74 90.96 85.15
0.1 75.97 61.77 89.83 91.03 85.36
0.5 73.98 59.30 88.45 89.20 85.82
1 73.96 59.31 88.82 90.32 83.07

Table 1. Statistical comparison of our ablation study for different
wcontr applied on DSB [1] and MoNuSeg [5] datasets with 1/32
labeled training data.

Different Patch Sizes for Contrastive Learning. Patch-
wise sampling is the primary task of our cross-patch dense
contrastive learning module, where we take the advantage
of inter-patch disparity as the basis for sampling negative
pairs. The size of patch may change the network’s judge-
ment of inter-patch disparity, and further affect the perfor-
mance of contrastive learning. The ablation study results
of different patch sizes are as shown in Table 2, which in-
dicates that the most suitable patch size for our module

performing patch-wise sampling and feature alignment is
h
8 × w

8 pixels in the image space.

Dataset size DC(%) JC(%) ACC(%) SP(%) SE(%)

DSB

h
2 × w

2 86.72 78.34 96.60 97.82 88.59
h
4 × w

4 86.90 78.55 96.51 97.66 89.63
h
8
× w

8
87.49 79.35 96.99 98.38 88.43

h
16 × w

16 87.08 78.86 96.58 97.70 89.89

MoNuSeg

h
2 × w

2 74.26 59.46 89.65 92.54 78.11
h
4 × w

4 75.08 60.64 89.37 90.60 84.69
h
8
× w

8
75.97 61.77 89.83 91.03 85.36

h
16 × w

16 75.14 60.75 89.32 90.32 85.67

Table 2. Statistical comparison of our ablation study for different
patch sizes applied on DSB and MoNuSeg datasets with 1/32 la-
beled training data. h and w represent the height and width of the
input image.

2. Comparison of Different Baseline Networks
We also adopted U-Net [10], with backbone ResNet-

50 [3], as the baseline segmentation network and conducted
experiments with different amounts of training labeled data.
Statistical results in Table 3 demonstrate that our method is
still effective, without over relying on a specific baseline
network.

3. More Visual Comparisons
We provide more visual comparison with FullSup,

SupOnly and other three state-of-the-art methods including
TCSMv2 [8], CutMix [2], GCT [4], CCT [9] and CAC [6],
on DSB and MoNuSeg datasets, with DenseUNet [7] as the
base segmentation network, as shown in Figure 1.
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Table 3. Statistical results of our method on DSB and MoNuSeg dataset by equipping U-Net as the baseline segmentation network.

Figure 1. More visual comparison with different state-of-the-art methods in nuclei image segmentation. FullSup is trained with 100%
labeled data while SupOnly with only 1/32. Other methods are trained in a semi-supervised manner with 1/32 labeled and 31/32 unlabeled
data. Green and red pixels indicate the predictions and ground truth respectively while yellow pixels represent their overlap regions.
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