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A. Additional Implementation Details
A.1. Volume rendering approximation

Given aray r(t) = x + dt and its intersection with the
voxel grid (£, £5™), ..., (M, %) for parameter values from

eye to far end and usmg the notation from the main text, the
volume rendering equation can be decomposed to:

e(r) = / Tk o)A 5 (v (t))e(r(t), d)dt.
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By applying Holder’s inequality to the nested integration,

we have:
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Therefore, we have:
n i—1
é(r) < (1 - Otj)OéiCi. (3)
i=1j=1

A.2. Feature integration

Assume the size of every voxel is 1 x 1 x 1 and a voxel
has feature vectors fi, . .., fg placed at its eight corners. In
the voxel’s local coordinate system, the feature value inside
the voxel at x = (z,y, 2) is then given by

f(z,y, 2 kaXk .9, 2), “4)
where:
xs(z,y,2) =ayz
x7(2,y,2) = (1-1z)yz
Xﬁ(xayvz) :.’b(l —y)Z
Xs5(2,9,2) =1 —z)(1—y)z
Xa(z,y,2) =xy(l—2) ®)
xs(@,9,2) =1 —-2)y(l—=z)
XQ('ray?Z) x(l—y)(l—z)
xi(@,y,2) =1-2)(1-y)(1-2)

Let xo = (20, Y0, 20), X1 = (21, Y1, 21) be the voxel’s inter-
section with a ray at entry and exit. It defines a ray segment
x(t):
x(t) = (z(t),y(t), 2(1))
= (@0, Yo, 20)(1 — ¢) ©)
+ (l‘l,yl, Zl)t,t S [0, 1}.

We want the interpolation function (basis) to be normalized
given fixed X, X1; the normalized f(x(¢)) along the ray is:

fox) = Zf(xg)
k=1

(x(0))dt
_ F(x(1))
ST e (@(®), (), 2(0) [ () dt
F(x(1))

= xo2”
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which gives normalized feature integration:

/ " Be(t))dt = / £ y(O: 20D iy a1

0 0 ||X1 - X0||2

= [ Y toute®)ute) 2(0)de

0 k=1

8 1 ®)
LY RCCROROIT

8
= kaXk<X0,X1).
k=1

The integration of each interpolation function only depends
on the entry and exit that produces a polynomial. In our
CUDA implementation, we factorize X} (xo,X1) as:

Xg(Xo,X1) _ 2xoono+21a:21y1z1+abc
X7(X0,X1) = —Xg(Xo,X1) +d
Xo(xo,x1) = St2020Eniz _ X (x0,X1)
X5(x0,x1) = § — Xg(%0,x1) —d ©)
X4(x0,x1) = —Xg(x0,%1) +e 7
Xj(x0,%x1) =2 — X7(x0,%x1) — €
Xo(x0,x1) = § — X6(%0,%1) — €
X1(x0,%1) 1— 2t — X5(x0,%x1) + €
where:
a =x9+ 1
b =yo+u
c =z +z2 . (10)
d = betyozotyitz
6
e — abtTovotwiys
6

A.3. Real-time ray-voxel intersection

For each ray, we first find its closest hit on the voxel grid,
and then ray marching to a fixed number of voxels in each
iteration of MLP evaluation. For closest hit calculation, we
build an octree from the occupancy map as a list of 3D arrays
by max pooling and traverse in the octree to speed up the
calculation. For ray marching after the closest hit, we do not
use the octree and use the algorithm described in [1].

A.4. Real-time MLP evaluation

Because weights and biases of the decoder MLP are glob-
ally shared, we upload them to CUDA constant memory to
speed up the memory read. Additionally, we refactor two
linear layers in the MLP to reduce calculations. We use the
DIVeR32 decoder architecture for the illustration, which can
be easily extended to DIVeR64.

Pre-multiplication of the first layer: Because there is no
activation (ReLU) between the integrated feature and the
first layer of the MLP, the weight of the first layer can be

pre-multiplied to the feature vectors. Given the weight and
bias of the first linear layer as W1, by, the first layer’s output
e; (without activation) is:

e = W1 / f(X(t))dt + b1
X0
8

=W, > fiXk(x0,x1) + by
k=1
g (11
= Zflgxk(XOaxl) + by
k=1
X1 “
_ / f1(x())dt + by,
Xo
where:
f, = Wif;. (12)

By pre-multiplying the weight to each feature vector after
the training and using Eq. 11 during inference time, the
operation needed for evaluating the first layer is reduced to a
vector add.

Composition of the third and fourth layers: Similarly,
the hidden feature hj of the third layer is not mapped with
ReLU, such that weights in the third and fourth layers can be
composited. Let W3, b3 denote the weight and bias of the
third layer, and W, by denote the weight and bias of the
fourth layer. Given the hidden feature of the second layer hy
and the positional encoded viewing direction y(d), we have:

{U} = W3hy +bs

h;
wg bg 1
= [ o)
er =W, [Vﬁd)} +by
3
_we Wy h‘f‘)} b,
2 (14)

= W{y(d) + Wih; + by

= Wiy(d) + Wi(Wihy +by) + by

= Wiy(d) + (WiW3)hy + (Wiby + by).
Therefore, the density ¢ and hidden feature of the fourth

layer e4 (without activation) could be directly calculated
from y(d) and h, without evaluating hs:

o = W$hy + bj (15)

e; = Wiy(d) + Wihy +b) (16)
where:

(17)

W/, = WEWE and b, = WhbE + by,

which avoids one 32 x 32 matrix multiplication and one 32
dimension vector add.



A.5. Object swapping

We use two cuboids to mark the objects to be swapped
and run k-mean clustering for each region to get the fine
segmentation. Feature vectors that belong to the largest
cluster are treated as the background; the rest of the features
are treated as the foreground objects to be swapped. In the
hot-dog scene, we use 12 clusters.

B. Experiment Details

In Tab. 1, we show the per-scene rendering quality com-
parison on the NeRF-synthetic dataset for all the baselines
we compared with (offline, real-time pre-trained, and real-
time applications). Tab. 2 shows the per-scene offline ren-
dering quality on the Tanks and Temple and BlendedM VS
datasets, and Tab. 3 shows the per-scene real-time perfor-
mance on the NeRF-synthetic dataset. For ablation on the
network architecture, we also show the per-scene perfor-
mance and rendering quality in Tab. 4.
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PSNR 1

Chair Drums Ficus Hotdog Lego Materials Mic  Ship Mean
NeRF 33.00 25.01 30.13 36.18 3254 29.62 3291 28.65 31.00
JaxNeRF 33.88 25.08 30.15 3691 3324 30.03 3452 29.07 31.64
Autolnt 25.60 20.78 2247 3233  25.09 25.90 28.10 24.15 25.55
NSVF 33.19 25.18 31.23 37.14 32.29 32.68 3427 2793 31.74
NeRF-SH 398 2517 30.72 36.775 3277 29.95 34.04 2921 31.57
JaxNeRF+ 3535 25.65 3277 37.58 3535 30.29 36.52  30.48 33.00
PlenOctrees 34.66 2531 3079 36.79  32.95 29.76 3397 2942 31.71
SNeRG 3324 2457 2932 3433 3382 27.21 32.60 2797 30.38
FastNeRF 3232 2375 27779 3472 32.28 28.89 31.77 27.69 2997
KiloNeRF - - - - - - - - 31.00
DIVeR64 3434 2539 3177 36.83 3552 29.63 3458 3050 3232
DIVeR32 34.10 2540 32.03 36.50 35.27 29.25 3456 30.17 32.16
DIVeR32(RT) 34.09 2540 32.02 3635 35.17 29.24 3453 30.14 32.12

SSIM 1

Chair Drums Ficus Hotdog Lego Materials Mic  Ship Mean
NeRF 0967 0.925 0964 0974 0.961 0.949 0.980 0.856 0.947
JaxNeRF 0974 0.927 0967 0979 0.968 0.952 0.987 0.865 0.952
Autolnt 0.928 0.861 0.898 0.974  0.900 0.930 0948 0.852 0911
NSVF 0968 0931 0973 0980 0.960 0.973 0987 0.854 0.953
NeRF-SH 0974 0927 0968 0978 0.966 0.951 0.985 0.866 0.952
JaxNeRF+ 0982 0936 0980 0983 0979 0.956 0991 0.887 0.962
PlenOctrees 0981 0933 0970 0982 0.971 0.955 0.987 0.884 0.958
SNeRG 0975 0929 0967 0971 0973 0.938 0.982 0.865 0.950
FastNeRF 0966 0913 0954 0973 0.964 0.947 0.977 0.805 0.941
KiloNeRF - - - - - - - - 0.950
DIVeR64 0978 0933 0975 0981 0.980 0.951 0.987 0.893 0.960
DIVeR32 0977 0932 0977 0979 0979 0.946 0987 0.886 0.958
DIVeR32(RT) 0.977 0932 0977 0978 0.978 0.946 0.987 0.885 0.958

LPIPS |

Chair Drums Ficus Hotdog Lego Materials Mic  Ship Mean
NeRF 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206 0.081
JaxNeRF 0.027 0.070 0.033 0.030 0.030 0.048 0.013 0.156 0.051
Autolnt 0.141 0.224 0.148 0.080 0.175 0.136 0.131 0.323 0.170
NSVF 0.043 0.069 0.017 0.025 0.029 0.021 0.010 0.162 0.047
NeRF-SH 0.037 0.087 0.039 0.041 0.041 0.060 0.021 0.177 0.063
JaxNeRF+ 0.017 0.057 0.018 0.022 0.017 0.041 0.008 0.123 0.038
PlenOctree 0.022 0.076 0.038 0.032 0.034 0.059 0.017 0.144 0.053
SNeRG 0.025 0.061 0.028 0.043 0.022 0.052 0.016 0.156 0.050
FastNeRF 0.032 0.083 0.031 0.031 0.022 0.034 0.022 0.192 0.053
KiloNeRF - - - - - - - - 0.030
DIVeR64 0.014 0.057 0.020 0.017 0.010 0.032 0.010 0.093 0.032
DIVeR32 0.014 0.058 0.020 0.019 0.010 0.035 0.011 0.102 0.034
DIVeR32(RT) 0.014 0.058 0.020 0.019 0.010 0.034 0.011 0.100 0.033

Table 1. Rendering quality on the NeRF-synthetic dataset.



PSNR 1
Barn Caterpillar Family Ignatius Truck Mean\ Jade Fountain Char Statues Mean

NeRF 24.05 23.75 30.29 2543 2536 25.78|21.65 2559 25.87 23.48 24.15
JaxNeRF 27.39  25.24 3247 2795 26.66 27.94| - - - - -
NSVF 27.16  26.44 3358 2791 2692 28.40(2696 27.73 2795 2497 2690

DIVeR64 27.31 25.64 3340 27.80 26.74 28.18(26.52 2830 28.81 2536 27.25

SSIM 1
Barn Caterpillar Family Ignatius Truck Mean\ Jade Fountain Char Statues Mean

NeRF 0.750  0.860 0.932 0920 0.860 0.864]0.750 0.860 0.900 0.800 0.828
JaxNeRF 0.842  0.892 0.951 0940 0.896 0.904| - - - - -
NSVF  0.832  0.900 0.954 0.930 0.895 0.900{0.901 00913 0.921 0.858 0.898

DIVeR64 0.850  0.903 0.960 0.941 0.904 0.912]0.900 0.918 0.948 0.873 0.910

LPIPS |
Barn Caterpillar Family Ignatius Truck Mean\ Jade Fountain Char Statues Mean

NeRF 0.395 0.196 0.098 0.111 0.192 0.198]0.264 0.149 0.149 0.206 0.192
JaxNeRF 0.286  0.189 0.092 0.102 0.173 0.168| - - - - -
NSVF  0.307 0.141 0.063 0.106 0.148 0.153]0.094 0.113 0.074 0.171 0.113

DIVeR64 0.209  0.121 0.050 0.082 0.119 0.116‘0.076 0.069 0.037 0.110 0.073

Table 2. Rendering quality on the Tanks & Temple and BlendedM VS datasets.

FPS 1
Chair Drums Ficus Hotdog Lego Materials Mic Ship  Range

PlenOctrees 143 78 23 15 45 13 76 10 7666

SNeRG - - - - - - - - 98437
FastNeRF - - - - - - - - R
KiloNeRF 40 - - - 40 - - 16 28+12

DIVeR32(RT) 59 40 39 44 67 29 66 27 47120

MB |
Chair Drums Ficus Hotdog Lego Materials Mic Ship  Mean

PlenOctrees 832 1239 1792 2683 2068 3686 443 2693 1930

SNeRG - - - - - - - - 84
FastNeRF - - - - - - - - -
KiloNeRF 204 - - - 108 - - 173 161

DIVeR32(RT) 55 56 47 84 64 62 24 151 68

GPUGB |
Chair Drums Ficus Hotdog Lego Materials Mic Ship  Range

PlenOctrees 094 134 1.87 273 219 3.70 0.56 2.74 1.65+1.09

SNeRG - - - - - - - - 1.73£1.48
FastNeRF - - - - - - - - -
KiloNeRF 1.94 - - - 1.41 - - 1.78 1.68+0.27

DIVeR32(RT) 1.04 1.04 1.03 1.06 1.04 1.04 1.01 1.13 1.07£0.06

Table 3. Performance of real-time applications on the NeRF-synthetic dataset.



PSNR 1

N Decoder Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean
256 DIVeR64(RT) 34.35 2538 31.76 36.76 3549 29.61 34.57 30.48 32.30
256 DIVeR32(RT) 34.09 2540 32.02 36.35 35.17 29.24 34.53 30.14 32.12
128 DIVeR64(RT) 3198 24.74 30.12 35.54 3257 2896 32.15 29.02 30.63
128 DIVeR32(RT) 31.54 24.75 30.25 3542 3261 28.82 31.97 28.80 30.52
FPS 1
N  Decoder Chair Drums Ficus Hotdog Lego Materials Mic Ship Range
256 DIVeR64(RT) 31 25 18 19 28 16 35 17 2649
256 DIVeR32(RT) 59 40 39 44 67 29 66 27  47+20
128 DIVeR64(RT) 57 38 29 33 41 28 53 17  37+£20
128 DIVeR32(RT) 108 82 61 84 99 67 119 45 82437
MB |
N  Decoder Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean
256 DIVeR64(RT) 55 42 49 80 64 62 24 118 62
256 DIVeR32(RT) 55 56 47 84 64 62 24 151 68
128 DIVeR64(RT) 9.2 8.2 8.5 15 12 9.6 4.7 30 12
128 DIVeR32(RT) 9.7 8.9 9.3 16 13 9.8 4.5 28 12

Table 4. Architecture ablation on the NeRF-synthetic dataset.
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