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A. Additional Implementation Details
A.1. Volume rendering approximation

Given a ray r(t) = x + dt and its intersection with the
voxel grid (tin1 , t

out
1 ), . . . , (tinn , t
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n ) for parameter values from

eye to far end and using the notation from the main text, the
volume rendering equation can be decomposed to:
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By applying Holder’s inequality to the nested integration,
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Therefore, we have:

ĉ(r) ≤
n∑
i=1

i−1∏
j=1

(1− αj)αici. (3)

A.2. Feature integration
Assume the size of every voxel is 1× 1× 1 and a voxel

has feature vectors f1, . . . , f8 placed at its eight corners. In
the voxel’s local coordinate system, the feature value inside
the voxel at x = (x, y, z) is then given by

f(x, y, z) =

8∑
k=1

fkχk(x, y, z), (4)

where: 

χ8(x, y, z) = xyz

χ7(x, y, z) = (1− x)yz
χ6(x, y, z) = x(1− y)z
χ5(x, y, z) = (1− x)(1− y)z
χ4(x, y, z) = xy(1− z)
χ3(x, y, z) = (1− x)y(1− z)
χ2(x, y, z) = x(1− y)(1− z)
χ1(x, y, z) = (1− x)(1− y)(1− z)

. (5)

Let x0 = (x0, y0, z0),x1 = (x1, y1, z1) be the voxel’s inter-
section with a ray at entry and exit. It defines a ray segment
x(t):

x(t) = (x(t), y(t), z(t))

= (x0, y0, z0)(1− t)
+ (x1, y1, z1)t, t ∈ [0, 1].

(6)

We want the interpolation function (basis) to be normalized
given fixed x0,x1; the normalized f(x(t)) along the ray is:

f̂(x(t)) =
f(x(t))∫ x1

x0

∑8
k=1 χk(x(t))dt

=
f(x(t))∫ 1
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which gives normalized feature integration:∫ x1
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The integration of each interpolation function only depends
on the entry and exit that produces a polynomial. In our
CUDA implementation, we factorize Xk(x0,x1) as:

X8(x0,x1) = 2x0y0z0+2x1y1z1+abc
12

X7(x0,x1) = −X8(x0,x1) + d

X6(x0,x1) = ac+x0z0+x1z1
6 −X8(x0,x1)

X5(x0,x1) = c
2 −X6(x0,x1)− d

X4(x0,x1) = −X8(x0,x1) + e

X3(x0,x1) = b
2 −X7(x0,x1)− e

X2(x0,x1) = a
2 −X6(x0,x1)− e

X1(x0,x1) = 1− a+b
2 −X5(x0,x1) + e

, (9)

where: 

a = x0 + x1
b = y0 + y1
c = z0 + z1
d = bc+y0z0+y1+z1

6

e = ab+x0y0+x1y1
6

. (10)

A.3. Real-time ray-voxel intersection
For each ray, we first find its closest hit on the voxel grid,

and then ray marching to a fixed number of voxels in each
iteration of MLP evaluation. For closest hit calculation, we
build an octree from the occupancy map as a list of 3D arrays
by max pooling and traverse in the octree to speed up the
calculation. For ray marching after the closest hit, we do not
use the octree and use the algorithm described in [1].

A.4. Real-time MLP evaluation
Because weights and biases of the decoder MLP are glob-

ally shared, we upload them to CUDA constant memory to
speed up the memory read. Additionally, we refactor two
linear layers in the MLP to reduce calculations. We use the
DIVeR32 decoder architecture for the illustration, which can
be easily extended to DIVeR64.
Pre-multiplication of the first layer: Because there is no
activation (ReLU) between the integrated feature and the
first layer of the MLP, the weight of the first layer can be

pre-multiplied to the feature vectors. Given the weight and
bias of the first linear layer as W1,b1, the first layer’s output
e1 (without activation) is:
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=
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=
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(11)

where:
f ′k = W1fk. (12)

By pre-multiplying the weight to each feature vector after
the training and using Eq. 11 during inference time, the
operation needed for evaluating the first layer is reduced to a
vector add.
Composition of the third and fourth layers: Similarly,
the hidden feature h3 of the third layer is not mapped with
ReLU, such that weights in the third and fourth layers can be
composited. Let W3,b3 denote the weight and bias of the
third layer, and W4,b4 denote the weight and bias of the
fourth layer. Given the hidden feature of the second layer h2

and the positional encoded viewing direction γ(d), we have:[
σ
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]
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=
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]
h2 +

[
bσ3
bh
3

] (13)

e4 = W4

[
γ(d)
h3

]
+ b4

=
[
Wd

4 Wh
4

] [γ(d)
h3

]
+ b4

= Wd
4 γ(d) +Wh

4h3 + b4

= Wd
4 γ(d) +Wh

4 (W
h
3h2 + bh

3 ) + b4

= Wd
4 γ(d) + (Wh

4W
h
3 )h2 + (Wh

4b
h
3 + b4).

(14)

Therefore, the density σ and hidden feature of the fourth
layer e4 (without activation) could be directly calculated
from γ(d) and h2 without evaluating h3:

σ = Wσ
3h2 + bσ3 (15)

e4 = Wd
4 γ(d) +W′

4h2 + b′4 (16)

where:

W′
4 = Wh

4W
h
3 and b′4 = Wh

4b
h
3 + b4,

(17)

which avoids one 32× 32 matrix multiplication and one 32
dimension vector add.



A.5. Object swapping
We use two cuboids to mark the objects to be swapped

and run k-mean clustering for each region to get the fine
segmentation. Feature vectors that belong to the largest
cluster are treated as the background; the rest of the features
are treated as the foreground objects to be swapped. In the
hot-dog scene, we use 12 clusters.

B. Experiment Details
In Tab. 1, we show the per-scene rendering quality com-

parison on the NeRF-synthetic dataset for all the baselines
we compared with (offline, real-time pre-trained, and real-
time applications). Tab. 2 shows the per-scene offline ren-
dering quality on the Tanks and Temple and BlendedMVS
datasets, and Tab. 3 shows the per-scene real-time perfor-
mance on the NeRF-synthetic dataset. For ablation on the
network architecture, we also show the per-scene perfor-
mance and rendering quality in Tab. 4.

References
[1] John Amanatides and Andrew Woo. A fast voxel traversal

algorithm for ray tracing. In Eurographics, 1987. 2



PSNR ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

NeRF 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65 31.00
JaxNeRF 33.88 25.08 30.15 36.91 33.24 30.03 34.52 29.07 31.64
AutoInt 25.60 20.78 22.47 32.33 25.09 25.90 28.10 24.15 25.55
NSVF 33.19 25.18 31.23 37.14 32.29 32.68 34.27 27.93 31.74
NeRF-SH 3.98 25.17 30.72 36.75 32.77 29.95 34.04 29.21 31.57
JaxNeRF+ 35.35 25.65 32.77 37.58 35.35 30.29 36.52 30.48 33.00

PlenOctrees 34.66 25.31 30.79 36.79 32.95 29.76 33.97 29.42 31.71
SNeRG 33.24 24.57 29.32 34.33 33.82 27.21 32.60 27.97 30.38
FastNeRF 32.32 23.75 27.79 34.72 32.28 28.89 31.77 27.69 29.97
KiloNeRF - - - - - - - - 31.00
DIVeR64 34.34 25.39 31.77 36.83 35.52 29.63 34.58 30.50 32.32
DIVeR32 34.10 25.40 32.03 36.50 35.27 29.25 34.56 30.17 32.16
DIVeR32(RT) 34.09 25.40 32.02 36.35 35.17 29.24 34.53 30.14 32.12

SSIM ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

NeRF 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856 0.947
JaxNeRF 0.974 0.927 0.967 0.979 0.968 0.952 0.987 0.865 0.952
AutoInt 0.928 0.861 0.898 0.974 0.900 0.930 0.948 0.852 0.911
NSVF 0.968 0.931 0.973 0.980 0.960 0.973 0.987 0.854 0.953
NeRF-SH 0.974 0.927 0.968 0.978 0.966 0.951 0.985 0.866 0.952
JaxNeRF+ 0.982 0.936 0.980 0.983 0.979 0.956 0.991 0.887 0.962

PlenOctrees 0.981 0.933 0.970 0.982 0.971 0.955 0.987 0.884 0.958
SNeRG 0.975 0.929 0.967 0.971 0.973 0.938 0.982 0.865 0.950
FastNeRF 0.966 0.913 0.954 0.973 0.964 0.947 0.977 0.805 0.941
KiloNeRF - - - - - - - - 0.950

DIVeR64 0.978 0.933 0.975 0.981 0.980 0.951 0.987 0.893 0.960
DIVeR32 0.977 0.932 0.977 0.979 0.979 0.946 0.987 0.886 0.958
DIVeR32(RT) 0.977 0.932 0.977 0.978 0.978 0.946 0.987 0.885 0.958

LPIPS ↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

NeRF 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206 0.081
JaxNeRF 0.027 0.070 0.033 0.030 0.030 0.048 0.013 0.156 0.051
AutoInt 0.141 0.224 0.148 0.080 0.175 0.136 0.131 0.323 0.170
NSVF 0.043 0.069 0.017 0.025 0.029 0.021 0.010 0.162 0.047
NeRF-SH 0.037 0.087 0.039 0.041 0.041 0.060 0.021 0.177 0.063
JaxNeRF+ 0.017 0.057 0.018 0.022 0.017 0.041 0.008 0.123 0.038

PlenOctree 0.022 0.076 0.038 0.032 0.034 0.059 0.017 0.144 0.053
SNeRG 0.025 0.061 0.028 0.043 0.022 0.052 0.016 0.156 0.050
FastNeRF 0.032 0.083 0.031 0.031 0.022 0.034 0.022 0.192 0.053
KiloNeRF - - - - - - - - 0.030

DIVeR64 0.014 0.057 0.020 0.017 0.010 0.032 0.010 0.093 0.032
DIVeR32 0.014 0.058 0.020 0.019 0.010 0.035 0.011 0.102 0.034
DIVeR32(RT) 0.014 0.058 0.020 0.019 0.010 0.034 0.011 0.100 0.033

Table 1. Rendering quality on the NeRF-synthetic dataset.



PSNR ↑
Barn Caterpillar Family Ignatius Truck Mean Jade Fountain Char Statues Mean

NeRF 24.05 23.75 30.29 25.43 25.36 25.78 21.65 25.59 25.87 23.48 24.15
JaxNeRF 27.39 25.24 32.47 27.95 26.66 27.94 - - - - -
NSVF 27.16 26.44 33.58 27.91 26.92 28.40 26.96 27.73 27.95 24.97 26.90

DIVeR64 27.31 25.64 33.40 27.80 26.74 28.18 26.52 28.30 28.81 25.36 27.25

SSIM ↑
Barn Caterpillar Family Ignatius Truck Mean Jade Fountain Char Statues Mean

NeRF 0.750 0.860 0.932 0.920 0.860 0.864 0.750 0.860 0.900 0.800 0.828
JaxNeRF 0.842 0.892 0.951 0.940 0.896 0.904 - - - - -
NSVF 0.832 0.900 0.954 0.930 0.895 0.900 0.901 0.913 0.921 0.858 0.898

DIVeR64 0.850 0.903 0.960 0.941 0.904 0.912 0.900 0.918 0.948 0.873 0.910

LPIPS ↓
Barn Caterpillar Family Ignatius Truck Mean Jade Fountain Char Statues Mean

NeRF 0.395 0.196 0.098 0.111 0.192 0.198 0.264 0.149 0.149 0.206 0.192
JaxNeRF 0.286 0.189 0.092 0.102 0.173 0.168 - - - - -
NSVF 0.307 0.141 0.063 0.106 0.148 0.153 0.094 0.113 0.074 0.171 0.113

DIVeR64 0.209 0.121 0.050 0.082 0.119 0.116 0.076 0.069 0.037 0.110 0.073

Table 2. Rendering quality on the Tanks & Temple and BlendedMVS datasets.

FPS ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Range

PlenOctrees 143 78 23 15 45 13 76 10 76±66
SNeRG - - - - - - - - 98±37
FastNeRF - - - - - - - - -
KiloNeRF 40 - - - 40 - - 16 28±12
DIVeR32(RT) 59 40 39 44 67 29 66 27 47±20

MB ↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

PlenOctrees 832 1239 1792 2683 2068 3686 443 2693 1930
SNeRG - - - - - - - - 84
FastNeRF - - - - - - - - -
KiloNeRF 204 - - - 108 - - 173 161
DIVeR32(RT) 55 56 47 84 64 62 24 151 68

GPU GB ↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship Range

PlenOctrees 0.94 1.34 1.87 2.73 2.19 3.70 0.56 2.74 1.65±1.09
SNeRG - - - - - - - - 1.73±1.48
FastNeRF - - - - - - - - -
KiloNeRF 1.94 - - - 1.41 - - 1.78 1.68±0.27
DIVeR32(RT) 1.04 1.04 1.03 1.06 1.04 1.04 1.01 1.13 1.07±0.06

Table 3. Performance of real-time applications on the NeRF-synthetic dataset.



PSNR ↑
N Decoder Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

256 DIVeR64(RT) 34.35 25.38 31.76 36.76 35.49 29.61 34.57 30.48 32.30
256 DIVeR32(RT) 34.09 25.40 32.02 36.35 35.17 29.24 34.53 30.14 32.12
128 DIVeR64(RT) 31.98 24.74 30.12 35.54 32.57 28.96 32.15 29.02 30.63
128 DIVeR32(RT) 31.54 24.75 30.25 35.42 32.61 28.82 31.97 28.80 30.52

FPS ↑
N Decoder Chair Drums Ficus Hotdog Lego Materials Mic Ship Range

256 DIVeR64(RT) 31 25 18 19 28 16 35 17 26±9
256 DIVeR32(RT) 59 40 39 44 67 29 66 27 47±20
128 DIVeR64(RT) 57 38 29 33 41 28 53 17 37±20
128 DIVeR32(RT) 108 82 61 84 99 67 119 45 82±37

MB ↓
N Decoder Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

256 DIVeR64(RT) 55 42 49 80 64 62 24 118 62
256 DIVeR32(RT) 55 56 47 84 64 62 24 151 68
128 DIVeR64(RT) 9.2 8.2 8.5 15 12 9.6 4.7 30 12
128 DIVeR32(RT) 9.7 8.9 9.3 16 13 9.8 4.5 28 12

Table 4. Architecture ablation on the NeRF-synthetic dataset.


	. Additional Implementation Details
	. Volume rendering approximation
	. Feature integration
	. Real-time ray-voxel intersection
	. Real-time MLP evaluation
	. Object swapping

	. Experiment Details

