
Supplementary Material for “Entropy-based Active Learning for Object Detection

with Progressive Diversity Constraint”

In this supplementary material, we elaborately analyze

how different components affect the performance of the

proposed diverse prototype (DivProto) strategy. In addi-

tion, we provide comparison results with the latest MDN [2]

and some exploration results with a state-of-the-art detector

and semi-supervised learning. To make a more comprehen-

sive evaluation, we present additional experimental results

on MS COCO as complements to Fig. 3 of the main paper.

A. Ablation Study of DivProto

As depicted in Section 4.3, DivProto consists of intra-

class redundancy rejection and inter-class balanced selec-

tion. We separately evaluate the effects of these two parts,

with the Basic Entropy as the baseline for comparison. As

summarized in Table A, both intra-class rejection and inter-

class balanced selection improve the performance of the

baseline under various annotation percentages. Their com-

bination further promotes the AP with 25% and 35% an-

notated percentages and remains highly competitive in the

other cases.

Method
Annotated Percentage

20% 25% 30% 35% 40%

Basic Entropy 27.57 29.38 30.61 31.47 32.36

Intra-class 27.57 29.52 30.32 31.15 32.57

Inter-class 27.57 29.59 30.70 31.83 32.37

Both 27.57 29.73 30.64 31.86 32.53

Table A. AP (%) on MS COCO by using intra-class redundancy re-

jection, inter-class balanced selection and their combination, com-

pared to the Basic Entropy baseline. All the methods are based on

Faster R-CNN with the ResNet-50 backbone. The best result for

each method is highlighted in bold.

B. Comparison with the latest work MDN

MDN [2] delivers gains in two ways: an acquisition

method based on uncertainty disentanglement and an im-

proved SSD detector based on GMM. In contrast, our

method mainly focuses on acquisition, and ENMS and Di-

vProto are proposed to handle redundant uncertainty esti-

mation and insufficient cross-image diversity, both of which

are not considered in [2]. To eliminate the effect of the

detector, we apply our acquisition method to the improved

SSD on VOC07+12 with the same setting as [2]. As in Ta-

ble B, our method outperforms [2], showing its advantage

in acquisition.

Acquisition Method Detector 2k 3k 4k

MDN [2] Improved SSD [2] 61.30 66.57 68.49

Ours Improved SSD [2] 63.35 67.56 70.33

Table B. mAP (%) of different acquisition methods on VOC07+12.

C. Results on SOTA Detectors

Our method is designed for active acquisition indepen-

dent of detectors, thus theoretically being effective for dif-

ferent detectors. We additionally evaluate our method by

using YOLOv51 in Table C, showing its effectiveness with

SOTA detectors.

Method 2% 4% 6% 8% 10%

Random 9.96 15.93 19.96 23.37 25.06

Ours 9.96 16.68 21.03 24.06 26.39

Table C. AP (%) using the YOLOv5 detector on MS COCO.

D. Combining with Semi-supervised Learning

In our opinion, semi-supervised learning is similar to

active learning in the goal of pursuing better performance

with less annotated data but in different learning paradigms.

As in Table D, we achieve better results by combining

our method with a reputed semi-supervised one, UBT [3],

where they complement each other.

Method 2% 4% 6% 8% 10%

Ours 6.70 15.44 18.82 20.83 22.26

UBT 24.30 27.01 28.45 29.41 31.50

Ours+UBT 24.30 28.55 30.28 31.70 32.24

Table D. AP (%) by combining UBT on MS COCO.

1https://github.com/ultralytics/yolov5
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E. Comprehensive Results on MS COCO

In Fig. 3 of the main paper, we report the Average Pre-

cision (AP) over IoU thresholds from 0.5 to 0.95 on MS

COCO, by using our method as well as the counterpart

methods: Core-set [4], CDAL [1], Learn Loss [5], and

MIAL [6]. In Table E, we provide more comparison results

under different metrics, including AP50, AP75, APS , APM ,

and APL. Here, AP50, AP75 are AP at the 0.5 and 0.75 IoU

thresholds, respectively. APS , APM , and APL indicate AP

for small, medium, and large objects, respectively.

As shown in Table E, our method remarkably outper-

forms the counterparts in most cases. It is worth noting that

Core-set [4] performs better than ours at detecting large ob-

jects, since it adopts spatial pooling to merge instance-level

features to a holistic image-level representation, based on

which the significance of large objects is strengthened. By

contrast, our method employs a more balanced way to inte-

grate instance-level features, thus achieving a higher aver-

aged AP for all scales at the cost of slightly lower AP for

large objects.
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Images Method AP AP50 AP75 APS APM APL

20% Random 27.57 48.81 28.09 14.53 29.87 36.12

25%

Random 28.97 50.43 29.84 15.39 31.25 37.84

Core-set 28.75 50.00 29.56 14.59 30.98 38.79

CDAL 29.11 48.60 27.86 14.29 29.69 35.82

Learn Loss 29.42 51.08 30.38 16.35 31.96 37.81

MIAL 29.39 51.21 30.36 15.96 31.87 38.68

Entropy 29.38 51.06 30.31 16.18 31.63 37.89

ENMS 29.76 51.64 30.78 16.72 32.12 38.03

DivProto 29.73 51.45 30.84 16.62 32.32 38.08

Ours 29.78 51.70 30.81 16.52 32.32 38.00

30%

Random 30.07 51.61 31.13 16.05 32.42 39.42

Core-set 29.90 51.37 31.12 15.60 32.19 40.65

CDAL 30.01 51.57 31.27 16.28 32.72 39.21

Learn Loss 30.55 52.53 31.90 17.68 33.10 38.52

MIAL 30.47 52.49 31.45 16.85 33.44 39.31

Entropy 30.61 52.66 31.96 17.49 33.13 38.97

ENMS 30.82 52.89 32.07 17.40 33.48 38.88

DivProto 30.64 52.64 31.77 17.21 33.37 38.92

Ours 30.90 53.08 32.01 17.56 33.44 39.10

35%

Random 30.99 52.70 32.47 16.88 33.52 40.35

Core-set 30.69 52.25 31.97 15.96 33.17 41.76

CDAL 31.17 53.07 32.55 17.22 33.84 40.56

Learn Loss 31.19 53.19 32.67 17.48 34.04 39.23

MIAL 31.75 53.89 33.42 17.51 34.60 41.09

Entropy 31.47 53.59 32.95 18.01 34.16 39.76

ENMS 31.79 54.05 33.29 18.11 34.50 40.14

DivProto 31.86 54.08 33.41 18.24 34.58 40.56

Ours 31.99 54.18 33.51 18.09 34.39 40.54

40%

Random 31.62 53.29 33.18 17.14 34.19 41.26

Core-set 31.31 52.89 32.80 16.19 33.81 42.85

CDAL 31.75 53.57 33.38 17.75 34.53 41.23

Learn Loss 32.33 54.61 33.92 18.72 35.37 40.76

MIAL 32.27 54.69 34.04 17.72 35.27 41.86

Entropy 32.36 54.69 33.97 18.67 35.25 40.63

ENMS 32.56 54.84 34.25 18.53 35.42 40.96

DivProto 32.53 54.77 34.24 18.57 35.34 41.44

Ours 32.87 55.15 34.58 18.99 35.57 41.44

Table E. AP by using various active learning based methods on MS COCO. All the results are based on Faster R-CNN with the ResNet-50

backbone. AP50 and AP75 refer to AP at the 0.5 and 0.75 IoU thresholds. APS , APM , and APL indicate AP for objects with small,

medium, and large sizes, respectively.


