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1. Architecture Specifications
The architecture design of MeMViT is based on

MViTv2 [6, 11]. Table 1 presents the exact specification.

stage operators output sizes
data stride 4×1×1 16×224×224

cube1
3×7×7, 96

96×8×56×56stride 2×4×4

scale2

[
MHPA(96)
MLP(384)

]
×1 96×8×56×56

scale3

[
MHPA(192)
MLP(768)

]
×2 192×8×28×28

scale4

[
MHPA(384)
MLP(1536)

]
×11 384×8×14×14

scale5

[
MHPA(768)
MLP(3072)

]
×2 768×8×7×7

(a) MeMViT-16, 16×4

stage operators output sizes
data stride 4×1×1 32×224×224

cube1
3×7×7, 96

96×16×56×56stride 2×4×4

scale2

[
MHPA(96)
MLP(384)

]
×2 96×16×56×56

scale3

[
MHPA(192)
MLP(768)

]
×3 192×16×28×28

scale4

[
MHPA(384)
MLP(1536)

]
×16 384×16×14×14

scale5

[
MHPA(768)
MLP(3072)

]
×3 768×16×7×7

(b) MeMViT-24, 32×3

Table 1. Architecture specification for our “MeMViT-16, 16×4”
(default) and “MeMViT-24, 32×3” models. Bold face high-
lights the difference between the two (i.e., temporal resolution and
depth). MHPA(c): Multi-Head Pooling Attention [6] with c chan-
nels. MLP(c′): MultiLayer Perceptron with c′ channels.

Relative Positional Embeddings. As discussed in §4, it
is important use relative positional embeddings instead of
absolute positional embeddings as used in MViTv1 [6]. Our

implementation is based on Shaw et al. [15], i.e.,1

Attn(Q,K, V ) = Softmax
(
(QK⊤ + E(rel))/

√
d
)
V,

where E
(rel)
ij = Qi ·Rp(i),p(j). (1)

p(i) and p(j) denote the spatiotemporal positions of to-
kens i (in queries) and j (in keys/values), respectively. In
other words, we learn relative positional embeddings R
that interact with queries Q depending on the relative po-
sitions between the queries and the keys/values. Note,
however, that the number of possible embeddings grows in
O(T ×H×W ), which is significantly more expensive than
the one-dimensional case considered in Shaw et al. [15] for
language modeling. We thus decompose the relative posi-
tional embeddings into

Rp(i),p(j) = Rt
t(i),t(j) +Rh

h(i),h(j) +Rw
w(i),w(j), (2)

where Rt, Rh, and Rw denote the relative positional em-
beddings along the temporal, frame hight, and frame width
dimensions, respectively. t(i), h(i), w(i) denote the tempo-
ral position, the vertical position, and the horizontal position
of token i, respectively.

Compression Module Details. The compression module
with a downsampling factor of rt× rh× rw is implemented
as a learnable pooling (i.e., depth-wise convolution) layer
with a kernel size of (2rt+1)× (2rh+1)× (2rw+1) and a
stride of rt × rh × rw.

2. Kinetics Pre-training Details
To pre-train MeMViT on the Kinetics datasets [2, 3, 10]

efficiently, we propose a progressive strategy. Namely, in-
stead of training on full Kinetics videos throughout, we

1The only difference between our implementation and Shaw et al. [15]
is that we do not add the additional embeddings on “values”, as in prelim-
inary experiments we did not find it to improve accuracy.
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progressively increase the video length from one clip long
(randomly sampled from full video) to the full video (10
seconds for Kinetics).2 Intuitively, this strategy allows the
model to see more diverse spatial patterns in earlier epochs
for faster spatial pattern learning and gradually adapt to
longer videos in later epochs. Concretely, we extend the
original MViTv2 recipe (that trains on one-clip-long videos
sampled from full videos) by a “second stage”, which con-
tains 40 epochs with 4 epochs of warm-up [9]. Within the
40 epochs, we train on videos that are 2-, 3-, 4-, and finally
5-clip-long for 10 epochs each. For data augmentation, we
randomly drop m ∈ [0,M − 1] steps out of the M steps
of memory tensors at each iteration of training. (At infer-
ence time, we still use all M steps of memory.) All other
optimization hyperparameters follow the original MViTv2
recipe [11].

3. AVA Experiments

Person Detector. The person detector used in AVA ex-
periments is a Faster R-CNN [14] with a ResNeXt-101-
FPN [12, 19] backbone from Wu et al. [18]. The model
obtains 93.9 AP@50 on the AVA validation set [18]. Please
refer to the original paper [18] for details.

Output Head. Instead of using a linear output head for
AVA, we additionally add a transformer layer (namely, an
MViTv2 layer without pooling, since each token is already
RoI-pooled) before the linear classifier. We find this to im-
prove accuracy. Table 2 presents ablation results.

4. EPIC-Kitchens-100 Experiments

We train our EPIC-Kitchens models with AdamW [13]
for 30 epochs using a base learning rate of 0.0002, a weight
decay of 0.05, and a batch size of 128. Other training hyper-
parameters follow the Kinetics [10] recipe of MViTv2 [11].
We fine-tune action anticipation models from action classi-
fication models using the same training recipe.

For the anticipation task, we perform experiments on
a causal version of MeMViT, to make sure our predic-
tion does not depend on frames beyond the “observed
video” [4, 5]. In particular, we 1) modify the learnable
pooling so that it strictly pools only current or past con-
tents, 2) mask attention so that it attends only current or
past contents, 3) make the convolutions in the data layer
‘causal’, and 4) remove the global ‘classification token’.
Following common practice in the object detection commu-
nity [16, 17], we use equalization loss [16] with threshold
λ = 0.003 to address the class imbalance issue.

2When MeMViT operates on videos that are one-clip-long, it effec-
tively falls back to a short-term MViTv2 (since there is no memory about
the video cached from the previous step).

Our action classification model has two heads to predict
verb and noun, respectively, following prior work [1, 18].
Our action anticipation model has only one head to predict
the action directly and marginalize the output probabilities
to obtain the verb and noun predictions, following standard
practice [7, 8].

5. Supplementary Experiments
Model Detail Ablation. Table 2 presents additional abla-
tion on our implementations choices.

mAP
MViTv2-B, 16×4 [11] (abs. positional embedding) 24.5

+ relative positional embedding 25.4
+ pool first 25.5
+ test on full frame 26.6
+ attention head (our default baseline) 27.0

Table 2. Detailed ablation on our default baseline model.
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