
8. Supplementary Material
8.1. Adjoint sensitivity method (ASM) for neural

ODE optimization

Here we briefly introduce the Adjoint sensitivity method
(ASM) for neural ODE optimization. While the loss func-
tion L in Eqn (4) can be any differentiable function, we will
describe ASM by assuming L to be the mean squared er-
ror (MSE) between the resulting flow z(t1) and the label zl
which is given by (4). The only reason we express MSE
in this form is that it’s more convenient for proving ASM
convergence. We can therefore formulate the following op-
timization problem

min
θ

L(z(t1)) =
∫ t1

t0

δ(t1 − t)∥z(t)− zl∥22dt,

s.t.
dz

dt
= fθ(z(t), t),

z(t0) = z0,

(13)

where δ(·) is the Dirac delta function which ensures that
only the gradients of the loss function with respect to z at
t = t1 gets propagated back. To propagate the gradient
from the loss function to the parameters θ, first we numeri-
cally solve the differential equation dz/dt = fθ(z(t), t) for
its trajectory forwards in time from t0 to t1 with the ini-
tial condition z(t0) = z0. Then we can define the adjoint
equation given by:

dλT

dt
= −λT ∂f

∂z
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z=z(t)

+
∂L
∂z

∣∣∣∣
z=z(t)

, (14)

where λT is a continuous-time Lagrange multiplier, also
known as the adjoint variable. In the case of MSE, we have
∂L/∂z = 2 ·δ(t1−t)(z(t)−zl). We then numerically solve
this equation backwards in time with the initial condition
λT (t1) = 0 to obtain the trajectory of λT from t = t1 to
t = t0. Lastly the gradient of the loss function with respect
to the parameters, also known as the sensitivity is given by

dL
dθ

= −
∫ t1

t0

λT
∂f

∂θ

∣∣∣∣
θ=θ(t)

dt. (15)

After obtaining this gradient, we can then perform op-
timization with methods such as gradient descent. Note
that the Jacobians ∂f/∂x and ∂f/∂θ can be computed ef-
ficiently using automatic differentiation during the forward
pass. In summary, ASM solves for gradients through the
following steps:

• Numerically solve dz/dt = fθ(z, t) forward in time
from t0 to t1.

• Numerically solve the adjoint equation (14) back-
ward in time from t1 to t0 using the initial condition
λT (t1) = 0.

• Numerically evaluate the integral in Eqn. (15) to ob-
tain the desired gradient.

8.2. Illustrative Examples in 2D pair images: results
of LDDMM

To explore the different properties of solution transfor-
mations between LDDMM and ours, we conduct the same
experiment on 2D pair examples as in Figure 1 using LD-
DMM shooting method. We use the Mermaid registration
toolkit*, with a learning rate of 0.01 and 500 epoches of op-
timization. The results of LDDMM are shown in Figure 6.
LDDMM generates a smoother transformation field, while
our method produces a more accurate match without violat-
ing diffeomorphism.

Figure 6. The rows show (J) the moving images, (I) fixed images,
(Jψ) warped moving images, and visualization of ψ respectively.

8.3. Anatomical structures

The details of 28 anatomical structures on which dice
scores are calculated are provided in Figure 7. For both
the OASIS and CANDI datasets, our method demonstrates
a consistent and significant improvement in both mean dice
scores over the all brain structures and on each anatomical
category as shown in Figure 7.

8.4. Qualitative comparison

We present the qualitative results of SYMNet and ours in
Figure 5. In this supplementary material, we provide quali-
tative comparisons of full benchmarks in Figure 8.

*https://github.com/uncbiag/mermaid
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Figure 7. Boxplots indicating Dice for 28 anatomical structures on OASIS and CANDI datasets for SYMNet and our method. The
abbreviations here represent brain stem (BS), thalamus (Th), cerebellum cortex (CblmC), lateral ventricle (LV), cerebellum white matter
(CblmWM), putamen (Pu), cerebral white matter (CeblWM), Ventral DC (VDC), caudate (Ca), pallidum (Pa), hippocampus (Hi), 3rd
ventricle (3V), 4rd ventricle (4V), amygdala (AM), CSF (CSD), cerebral cortex (CelbC).

Figure 8. Images showing an example of a registration image pair. Fixed image is OASIS ID001 and Moving image is OASIS ID002. The
3rd column to the 7th column are results of SYMNet, SyN, NiftyReg, Log-Demons and ours respectively.

12


