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1. Additional Illustrations
1.1. Frame, Shot, Clip and Scene

Fig. 1 shows the connection between frame, shot, scene
and video. More specifically, a shot contains only continu-
ous frames taken by the camera without interruption, and a
scene is composed of successive shots and describes a same
short story. Typically, a consecutive shot sequence of arbi-
trary length can be treated as a clip.
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Figure 1. The illustration of the connection between frame,
shot, scene and video. The green and orange lines represent Shot
and Scene Boundaries, respectively.

1.2. Shot Sampling Strategy

Video data is highly redundant because there are many
repetitive frames in chronological order, and we follow the
sampling strategy in [1, 2] for long-term videos. More con-
cretely, the video sequence is sliced according to the shot
boundaries that are determined by the transition of the vi-
sual modality. Based on the beginning and ending positions
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of shots, a fixed number of N = 3 frames are selected and
treated as the original feature of one shot, where the start-
ing, middle and ending frames of the shot are sampled.

2. Algorithm Details
2.1. Representation Learning Stage

In the Representation Learning Stage, the proposed SSL
algorithm can be summarized in Algorithm 1.

Algorithm 1 SSL for Video Scene Segmentation.
Input: Training samples X
Require: Initialized encoders f (· | θQ) and f (· | θK); Ini-
tialized memory bank Queue; Augmentation operations
AugQ(·) and AugK(·); Number of iterations niter

1: for i = 1 to niter do
2: Obtain augmented training samples Q,K by Q =

AugQ(X),K = AugK(X);
3: Obtain mapping function MAP (·);
4: Obtain positive pairs {q, k+} by Eq. (1);
5: Detach samples k+ from Calculation Graph;
6: Obtain negative samples k− from Queue;
7: Calculate contrastive loss Lcon by Eq. (7) or (8);
8: Perform backpropagations for Lcon;
9: Update encoder f (· | θQ) by gradient descent;

10: Update encoder f (· | θK) by momentum update;
11: Enqueue the positive samples k+ to Queue;
12: end for
Output: Query encoder f (· | θQ).

2.2. Video Scene Segmentation Stage

The Boundary based model (i.e., MLP protocol [2]) and
Boundary free model (i.e., Bi-LSTM protocol introduced
by us) are presented in Fig. 2.
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For the MLP protocol [2], we use SGD as the optimizer,
and the weight decay is 1e-4 and the SGD momentum is
0.9. In the training stage, we use a mini-batch size of 128
and dropout rate of 0.4 for FC layers. Besides, we train for
200 epochs with the learning rate multiplied by 0.1 at 50,
100 and 150 epochs.

For the Bi-LSTM protocol, we use SGD as the optimizer,
and the weight decay is 1e-4 and the SGD momentum is 0.9.
In the training stage, we use a mini-batch size of 32 and
dropout rate of 0.7 for FC layers (except for the last layer),
the Bi-LSTM was implemented using the LSTM module
in PyTorch [3], which includes two layers with 512 hid-
den units together with a dropout layer with the dropout
probability of 0.6 between them. Besides, we train for
200 epochs with the learning rate multiplied by 0.1 at 160,
180 epochs. In the inference stage, in order to make each
shot aggregate as much information as possible from the
adjacent shots, in each inference batch, we use the middle
portion of the model output sequence as the scene bound-
ary. More specifically, for the input shot feature sequence,
i.e. [S0, S1, · · · , SShot−Len −1], we adopt the subsequence,
i.e. [Y⌈Shot−Len/4⌉, · · · , Y⌈3∗Shot−Len/4⌉ −1] of the corre-
sponding output sequence, i.e. [Y0, Y1, · · · , YShot−Len −1]
as the prediction result. Additionally, the first and last shot
features are used to pad the beginning and ending of the shot
feature sequence, respectively.
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Figure 2. The illustration of Boundary based and Boundary free
models, where B, N and Shot-Len represent the batch size, di-
mension of the feature and length of shots processed within a
batch.

3. Additional Implementation Details

3.1. Datasets

The details of BBC [4], OVSD [5], MovieNet [6] and
MovieScene [1] datasets are shown in Tab. 1. The scala-
bility of BBC [4] and OVSD [5] is much smaller than that
of MovieNet [6] and MovieScene [6]. BBC [4] has 5 dif-
ferent annotations and the number of scenes is averaged, as
shown in Tab. 1. The ground truth Shot Detection result of
OVSD [5] is unavailable from its official website and [1],
thus, we provide our implementation results on Shot De-
tection in the Tab. 1. It is worth noting that movies in the
MovieScene [1] are all included in MovieNet [6].

Table 1. Details of BBC/OVSD/MovieNet/MovieScene datasets.

Datasets #Video Time(h) #Shot #Scene

BBC [4] 11 9 4,900 547
OVSD [5] 21 10 9,377 607
MovieScene-150 [1] 150 297 270,450 21,428
MovieScene-318 [1] 318 601 503,522 41,963

MovieNet [6] 1,100 3,000

To show the difference of the 5 annotation results, we
present the average (mean), minimum (min), maximum
(max) and standard deviation (std.) of the number of scenes
for each video in BBC [4] with each annotation in Tab. 2.

Table 2. Number of scenes in each video of BBC dataset.

Video Names #Scene
mean min max std.

From Pole to Pole 47.8 23 65 14.4
Mountains 47.6 36 62 9.8
Ice Worlds 50.6 33 69 12.1

Great Plains 52.0 30 74 14.1
Jungles 47.4 25 59 11.8

Seasonal Forests 53.4 33 71 12.1
Fresh Water 55.2 37 70 10.5
Ocean Deep 47.8 29 67 12.7
Shallow Seas 49.2 33 66 12.0

Caves 45.4 22 63 14.1
Deserts 50.8 26 64 13.7

All Videos Avg. 547

3.2. Backbones

For the visual modality, ResNet50 [7] is used as the en-
coder with the same modification [2] that the input channel
number of first convolution layer is changed from 3 to 9. As
for audio modality, we adopt the same backbone used in [1].



3.3. Choice of Hyperparameters

Two hyperparameters are introduced in the Sec. 3.1.2 of
the main body of this work, i.e. number of cluster (#class)
for Scene Consistency Selection strategy and length of con-
tinuous shots (ρ) for Scene Agnostic Clip-Shuffling. We
study the sensitivity of the proposed algorithm against these
two hyperparameters in Tab. 3. MLP [2] protocol on the
MovieScene-318 dataset is used in this experiment.

Table 3. AP results for different settings of hyperparameters. The
bolded and underlined values stand for the optimal and suboptimal
performances, respectively.

ρ /#class 16 24 32

16 51.80 53.74 53.22
24 52.64 53.62 53.13
32 52.68 52.91 53.05

3.4. Data Augmentation Details

We follow the data augmentation operation used in the
[8], i.e. random cropping, flipping, color distortion, Gaus-
sian bluring. A PyTorch-like pseudo code for the data aug-
mentations, i.e., Asymmetric Augmentation mentioned in
Sec. 3.1.2 of the body of this work, is presented as follows:

1 import torchvision.transforms as transforms
2 normalize = transforms.Normalize(
3 mean=[0.485, 0.456, 0.406],
4 std=[0.229, 0.224, 0.225])
5 # augmentation for key encoder
6 augmentation_key_encoder = [
7 transforms.ToPILImage(),
8 transforms.RandomResizedCrop(224, scale=(0.2,

1.)),
9 transforms.RandomApply([

10 transforms.ColorJitter(0.4, 0.4, 0.4,
0.1)], p=0.5),

11 transforms.RandomGrayscale(p=0.2),
12 transforms.RandomApply([GaussianBlur([.1,

2.])], p=0.5),
13 transforms.RandomHorizontalFlip(),
14 transforms.ToTensor(),
15 normalize
16 ]
17 # augmentation for query encoder
18 augmentation_query_encoder = [
19 transforms.ToPILImage(),
20 transforms.RandomResizedCrop(224, scale=(0.2,

1.)),
21 transforms.RandomApply([GaussianBlur([.1,

2.])], p=0.5),
22 transforms.RandomHorizontalFlip(),
23 transforms.ToTensor(),
24 normalize
25 ]

Listing 1. A PyTorch-like pseudo code for the data augmentation.

4. Additional Results

4.1. Results on BBC/OVSD Datasets

Since the training/validation/testing datasets of BBC
[4]/OVSD [5] are not available and the scale of these two
datasets is very small compared to MovieNet [6] dataset,
we apply the model trained on MovieNet [6] onto BBC [4]
and OVSD [5] to study the generalization abilities of the
algorithms without the finetuning, the results are shown in
Tab. 4 and Tab. 5.

Tab. 4 shows that the proposed method outperforms
ShotCoL [2] by a large margin of 13.27 in terms of AP on
OVSD [5].

Table 4. AP results on OVSD dataset.

Methods AP

ShotCoL [2] 25.53
SCRL 38.80

We conduct experiments of 5 different annotators on
BBC [4] and show the average performances in Tab. 5,
where the proposed method outperforms the compared
method by a margin of 2.20 in terms of AP.

Table 5. AP results on BBC dataset. A. i stands for the i-th anno-
tation and Avg. represents the average of the results of 5 different
annotators.

Methods A. 1 A. 2 A. 3 A. 4 A. 5 Avg.

ShotCoL [2] 29.90 30.81 31.45 26.45 21.27 27.98
SCRL 32.45 32.54 33.27 28.36 24.27 30.18

Model SizeB. based: MLP
B. based: LGSS B. free: Bi-LSTM

228M

38M

15M

Figure 3. AP results on the MovieScene-318 dataset and model
size of Boundary based and Boundary free models, where B.
stands for Boundary and Shot-Len represents the length of shots
processed within a batch.
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Figure 4. The visualization results of shot retrieval. Compared with the other methods, the results of SC appear more consistent in terms
of the the semantic information, i.e., scenes with explosions.

4.2. Results under MLP/Bi-LSTM protocols

To study the superiority of the introduced evaluation pro-
tocol for the task of Video Scene Segmentation, AP results
together with the model size of Boundary based (i.e., LGSS
[1] and MLP [2] protocol) and Boundary free (i.e., intro-
duced Bi-LSTM protocol) models are shown in Fig. 3.

As shown in Fig. 3, although performances of all models
are associated with the length of the shots, i.e., Shot-Len,
the Boundary based model achieves the best performance
only when the Shot-Len is relatively small (and the opti-
mal Shot-Len is less than the average number of shots per
scene, i.e. 12). As Shot-Len becomes larger, the perfor-
mance decreases and the model size increases. By contrast,
the Boundary free model produces less inductive bias and
takes the shot features as the unit of basic temporal input,
hence, it is able to model representations of longer shots,
while achieving better performances when Shot-Len takes
a value in the approximate range and a model with the same
size is employed.

4.3. Visualization

4.3.1 Shot Retrieval

An additional result of Shot Retrieval, which is introduced
in the Sec. 4.4 of the main body of this work, is given in the
Fig. 4.

4.3.2 Scene Boundary

To study the practical performance of our approach for the
Video Scene Segmentation task, we visualize the GT/Predic-

tion scene boundaries in Fig. 5. For simple scenes in Fig. 5
(a1)/(a2), the proposed method easily identifies these scenes
and gives correct predictions of the scene boundary. As
shown in Fig. 5 (b1)/(b2)/(c1)/(c2), there are also bad cases
where the proposed method fails to distinguish between the
segmentation points of a shot and a scene, and for these
cases, it may be confusing to identify whether these shots
belong to the same scene or not, from the visual modality.
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Figure 5. The ground truth (GT) and prediction scene boundaries are presented in this figure, where the middle frame of each shot is
visualized. Fig. (a1)/(a2), Fig. (b1)/(b2) and Fig. (c1)/(c2) show the prediction cases of true positive, false negative and false positive,
respectively.
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