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Here we provide more details about our method. An
overview of this supplementary material is as follow:
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• Section C: Additional Details

– C.1 Dilated Neighbor
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A. Additional Ablation Studies

A.1. Auxiliary Heads

To prevent gradients from being dominated by a particular
Stream, we employ two auxiliary heads on LiDAR Stream
and Pseudo Stream, respectively. As seen in Table 1, each
auxiliary head can improve our SFD. With two auxiliary
heads employed, we can achieve a better result.

P.A.H. R.A.H. AP3D
Easy Mod. Hard
94.94 88.12 85.30√
95.36 88.26 85.62√
95.40 88.38 85.72√ √
95.47 88.56 85.74

Table 1. Ablation study on auxiliary heads. “P.A.H.” and “R.A.H.”
stand for Pseudo Auxiliary Head and Raw Auxiliary Head.

A.2. Grid Size for Pseudo Clouds Voxelization

At the end of Pseudo Stream, we voxelize pseudo clouds
in a 3D RoI to a G × G × G RoI feature. Then we use
3D sparse convolutions to extract grid-wise features in the
RoI. Finally, the grid size of RoI feature is converted to
6× 6× 6, which is consistent with the grid size of the raw
RoI feature. The grid size of raw RoI features has been
fine-tuned by Voxel-RCNN [1], so we do not change it. Here
G is a multiple of 6. We conduct experiments to choose a
proper G, as shown in Table 2. With G = 12, our SFD can
achieve a good performance, so we let G as 12.

Grid Size
AP3D

Easy Moderate Hard

6 95.50 88.47 85.64
12 95.47 88.56 85.74
24 95.38 88.39 85.91

Table 2. Ablation study on different grid sizes.

A.3. Comparison of PointNet++ and CPConv

Because of the massive pseudo points, it is impossible
to perform PointNet++ [6] on all pseudo points. Thus, we
need to downsample pseudo clouds to utilize PointNet++.
In our experiment, we sample 1024 pseudo points in each
3D RoI. Table 3 provides a comparison of PointNet++ and
CPConv. With more time, PointNet++ performs much worse
than CPConv. We summarize the reasons as the following
two points. Firstly, PointNet++ cannot make use of 2D
semantic features in pseudo clouds due to the ball query.
Secondly, downsampling used by PointNet++ causes a lot
of information loss, while in CPConv, we can keep most
pseudo points in 3D RoIs thanks to the fast neighbor search.

Method Inference Time
AP3D

Easy Moderate Hard

PointNet++ 95ms 92.25 85.61 83.36
CPConv 12ms 95.47 88.56 85.74

Table 3. Comparison of PointNet++ and CPConv. The results are
evaluated with AP calculated by 40 recall positions for car class.
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A.4. Number of CPConv

In our SFD, we stack several CPConvs to extract high-
level features of pseudo clouds. Table 4 shows the results
of SFD with different numbers of CPConvs. As the number
of CPConv increases, the performance gradually improves.
When we use four CPConvs, the performance is not im-
proved. Thus, we only use three CPConvs for a balance of
accuracy and efficiency.

Number
AP3D

Easy Moderate Hard

1 95.40 88.24 85.73
2 95.52 88.29 85.71
3 95.47 88.56 85.74
4 93.53 88.50 85.83

Table 4. Ablation study on different numbers of CPConvs.

A.5. Robustness Analysis on Depth Completion

To validate the robustness of our method to depth com-
pletion networks, we utilize four different depth completion
networks on our SFD, as seen in Table 5. The RMSE (root
mean squared error) is the most important metric for evaluat-
ing the performance of depth completion methods. The 3D
detection results in Table 5 show that with different depth
completion networks, our method can still maintain a high
performance. Interestingly, although TWISE [3] performs
worst in the four depth completion networks on the RMSE
metric, it works very well in our 3D detection framework.

Depth Completion Network RMSE ↓ AP3D
Easy Moderate Hard

PENet [2] 730.08 95.47 88.56 85.74
MSG-CHN [4] 762.19 95.10 87.84 85.24

Sparse-to-Dense [5] 814.73 95.20 88.19 85.59
TWISE [3] 840.20 95.41 88.58 86.01

Table 5. Robustness experiment with different depth completion
networks. The depth completion results are from the KITTI depth
completion leaderboard. ↓ is for lower better. The detection results
are evaluated on the KITTI val set.

Statistics 0m-10m 10m-20m 20m-30m 30m-40m 40-50m 50m-Inf
Pseudo point number 29023 8739 2101 896 504 218

Raw point number 2522 594 155 59 29 11
Ratio (Pseudo / Raw) 11.5 14.7 13.6 15.2 17.4 19.8

Table 6. The statistics of pseudo points and raw points on objects
in different distance ranges.

B. Additional Discussions
B.1. Analysis of Raw Clouds and Pseudo Clouds

To quantitatively compare the raw clouds and pseudo
clouds, we count the average number of raw points and
pseudo points on objects within different distances, as shown
in Table 6 and Figure 1. In different distances, pseudo points
are always more than ten times the raw points, demonstrating

Figure 1. The average number of pseudo points and raw points on
objects in different distances. For the convenience of visualization,
we use the square of the number of points as the vertical axis.

Figure 2. The ratio of pseudo point number and raw point number
on objects in different distance ranges.

Figure 3. Comparison of raw clouds and pseudo clouds.

the rationality of enhancing raw clouds with pseudo clouds.
In addition, we observe that the number of pseudo clouds
decays slower than raw clouds with depth increasing, as
shown in Figure 2, which indicates that pseudo clouds are
more advantageous than raw clouds for long-distance object
detection. We also provide a qualitative comparison between
different types of clouds, as shown in Figure 3. Pseudo
point clouds can provide sufficient information, especially
for distant and occluded objects.



B.2. How About Using Pseudo Clouds in RPN?

In our SFD, pseudo clouds and raw clouds are fused in
RCNN with our 3D-GAF. The pseudo clouds are not used in
RPN. The reasons are three-folds.

Firstly, using pseudo clouds in RPN will increase much
computational overhead due to the huge number of pseudo
points. In our SFD, we only need process pseudo points in
3D RoIs, which can save much time.

Secondly, the compatibility of SFD with LiDAR-only
methods will be weakened. With only RoI feature fusion,
we don’t need to modify anything of LiDAR-only detectors,
which enables our SFD to be compatible with almost all
LiDAR-only methods, including one-stage methods, two-
stage methods, point-based methods, voxel-based methods
and point-voxel-based methods.

Thirdly, most objects missed by the model are those
that RPN can roughly detect but cannot accurately detect
(IoU(dt, gt) ∈ [0.3, 0.7)), rather than those that RPN can
barely detect (IoU(dt, gt) ∈ [0, 0.3)). Table 7 shows that
with IoU threshold 0.3, the RPN recall of SFD can reach
98%, while with IoU threshold 0.7, the recall of RPN and
RCNN is only about 80%. It indicates that RPN can roughly
detect most objects with only raw clouds, but it fails to give
accurate predictions. Therefore, we argue that the top prior-
ity of current 3D detection methods is recalling those objects
(about 98% − 80% = 18%) that can be roughly detected
instead of recalling those barely detectable objects (only
100% − 98% = 2%). So in our method, we concentrate
on refining the proposals generated from RPN. As shown
in Table 7, our method improves the RCNN recall by 4.4%.
In addition, we find that the RPN recall of SFD is higher
than that of Voxel-RCNN, suggesting that our method can
optimize RPN implicitly.

Method RPN0.3 RPN0.7 RCNN0.7

Voxel-RCNN 95.5% 76.1% 78.2%
SFD(ours) 98.1% 77.2% 82.6%

Table 7. Recall of different stages with different IoU thresholds.

C. Additional Details
C.1. Dilated Neighbor

When performing CPConv, we search nine neighbors
(including self) for each pseudo point in 3D RoIs on the
image domain. In practice, we search dilated neighbors
instead of nearest neighbors, as shown in the Figure 4. The
reasons are two-folds.

Firstly, dilated neighbor search provides a large receptive
field [7]. Stacking more CPConvs can provide a larger re-
ceptive field while calculations are also increased. Dilated
neighbor search can alleviate this issue. The receptive field
of the dilated neighbor search is twice that of the nearest

Figure 4. Illustration of dilated neighbor and nearest neighbor.

neighbor search, allowing our SFD to get a larger receptive
field without increasing computation overhead.

Secondly, dilated neighbor search enables us to downsam-
ple nearby pseudo clouds. We count the number of pseudo
points within 15m and find that these points account for
about 70% of the total, while current 3D detection methods
perform very well in this range. It is unnecessary to spend
too many calculations on the close range. Therefore, before
feeding pseudo clouds to our CPConv, we perform downsam-
pling on the nearby pseudo clouds. Concretely, for pseudo
points within 15m, we remove those whose u or v is even. In
this way, only 25% of nearby pseudo clouds are left, saving
about 70%× (1− 25%) ≈ 53% calculations. However, the
downsampling makes nearest neighbors of nearby pseudo
points are all discarded. Fortunately, their dilated neighbors
are left. So dilated neighbor search is more suitable than
nearest neighbor search in this situation.

C.2. Experiment Settings

Voxelization The raw clouds are divided into regular
voxels before being fed into LiDAR Stream. Because the
KITTI dataset only provides annotations in the FOV, we
clip the range of raw clouds into [0, 70.4]m for the X axis,
[−40, 40]m for the Y axis and [−3, 1]m for the Z axis. The
input voxel size is set as (0.05m, 0.05m, 0.1m). In addition,
we clip the range of pseudo clouds into [−3, 1]m for Z axis.

Training Our SFD is optimized with the Adam opti-
mizer and trained for 40 epochs with a batch size of 8. The
learning rate is initialized as 0.01 and updated by cosine an-
nealing strategy. In the RoI head, binary cross entropy loss
and 3D GIoU Loss [8] are employed for classification and re-
gression loss. The foreground IoU threshold θH , background
IoU threshold θL, box regression IoU threshold θreg is set
as 0.75, 0.25 and 0.55. We randomly sample 128 proposals
as the training samples of the RoI head.

Inference At the inference stage, the two auxiliary
heads are detached. We perform NMS on the proposals
generated from the RPN with IoU threshold 0.7 and keep
the top-100 proposals as the input of the RoI head. After the
refinement stage, we use an NMS threshold of 0.1 to remove
the redundant detections.



D. KITTI Detection Leaderboard Screenshot
We validate our method by submitting our results to

KITTI online test server. As shown in Figure 5 and Fig-
ure 6, our SFD ranks 1st and 3rd on the KITTI car 3D and
BEV detection leaderboard.

Figure 5. Screenshot of the KITTI car 3D detection leaderboard on
the date of CVPR deadline, i.e., Nov 16, 2021.

Figure 6. Screenshot of the KITTI car BEV detection leaderboard
on the date of CVPR deadline, i.e., Nov 16, 2021.
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