
Supplementary Materials

Cho-Ying Wu2, Jialiang Wang1, Michael Hall1, Ulrich Neumann2 and Shuochen Su1

1Meta Reality Labs, 2University of Southern California
{jialiangw,michaelhall,shuochsu}@fb.com, {choyingw, uneumann}@usc.edu

A. Overview
In Sec. B, we provide more details of all datasets and

include some samples. We especially focus on our pro-
posed large-scale SimSIN and UniSIN datasets. In Sec. C,
we show both numerical and visual analysis on UniSIN’s
test set. In Sec. D, we describe the closed-form solutions
to the least-square problem used in Sec.3.2 of the paper.
In Sec. E, we first create a simple oracle that uses the
least-square alignment from DPT’s outputs to groundtruth’s
metric depth and evaluate the performance of this oracle
method. We then present more studies on our loss combi-
nations. In Sec. F, we explain more on the terms of depth-
relevant and depth-irrelevant low-level cues mentioned in
paper Sec.3.2. In Sec. G, we present more results on VA and
Hypersim. We further present downstream applications us-
ing depth maps from our DistDepth, including depth-aware
AR effects and 3D photos. Last, we include a video that ex-
plains our work and include demonstrations for 3D photos,
depth-aware AR effects, and real-time depth sensing.

B. Datasets
We show a collection of data samples in Fig.S2 for all

datasets we include.
VA and Hypersim: We render a delicately constructed

3D environment [2] using Unreal Engine 4 (UE4) [1], in-
cluding 7K left-right paired images. This environment con-
tains challenging indoor scenes, such as cabinet cubes with
different lighting conditions, thin structures, and complex
decorators. We also include several pre-rendered scenes in
the Hypersim dataset [15] for qualitative evaluation.

NYUv2: This public dataset [19] includes various in-
door scenes captured by Kinect that produces monocular
RGB images and depth from the time-of-flight laser system.
Although NYUv2 is popular for single-image depth estima-
tion, the images are low-resolution and contain noise due to
its older camera model, making it hard to claim practicabil-
ity in recent AR/VR creation needs. Thus, we also collect
our large-scale real dataset for training and evaluation.

SimSIN: This dataset includes 515K left-right paired
images using Habitat simulator [21] with 3D environments
of Replica [20], MP3D [4], and HM3D [13]. These 3D en-
vironments are created by processing real room scans. We
use our large-scale SimSIN as the training dataset. One
can find that the rendered images from Replica have bet-
ter quality in both appearance and geometry than MP3D
and HM3D, but Replica contains only 18 scenes with lower
scene variation. In contrast, MP3D and HM3D contain 90
and 900 various scenes. Thus we aggregate these 3D envi-
ronments to attain higher dataset diversity and also maintain
appearance and geometry quality.

UniSIN: The collected UniSIN, including real univer-
sity scenes using recent high-performing ZED stereo cam-
eras, which contains better imaging quality than NYUv2.
Its training split contains 500 sequences with about 200K
left-right images, and the testing data includes 1K images
for numerical evaluation. The scenes include private or pub-
lic spaces, and we organize the number of sequences for
each type of space in Table S1.

Both our SimSIN and UniSIN are large-scale datasets of
indoor scenes with stereo pairs to fulfill training with left-
right consistency. We also enumerate other existing stereo
datasets (that are not used in this work) as follows.

(1) Large-scale datasets that focus on driving scenarios:
KITTI [9], vKITTI [8], Cityscapes [7], and Argoverse [5].

(2) Indoor datasets but small-scale: Middlebury 2021 (48
images), Middlebury 2014 (66 images) [16], or some scenes
in ETH3D two-view Stereo (32 images) [17].

(3) Datasets scraped from web or in-the-wild: WSVD
[22] and Holopix50K [10].

(4) Datasets of 3D movies with non-realistic scales:
SceneFlow [12] and Sintel [3].

Although category (2) also targets at indoor scenes, they
focus on stereo matching algorithms, where smaller num-
bers of images may be efficient for training [11]. By
contrast, our DistDepth is a monocular depth estimation
method whose DepthNet only takes a single image and pre-
dicts its depth map. Furthermore, self-supervised learning
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Table S1. Number of sequences for different types of space.
Private
room

Office Hallway Lounge Meeting
room

44 94 118 93 13
Large
room

Classroom Library Kitchen Playroom

29 47 24 24 14

Figure S1. Depth distributions for SimSIN and UniSIN.

inherently requires larger training datasets since there are
no direct image-to-depth mappings accessible at training
time. Therefore, we collect large-scale datasets, SimSIN
and UniSIN, to achieve our aims of self-supervised monoc-
ular depth estimation with left-right consistency and verify
our advantages of closing sim-to-real gaps.

We plot the depth distributions for our newly created
datasets, SimSIN and UniSIN, in Fig. S1.

C. Numerical Analysis on UniSIN
We also exhibit numerical analysis on the UniSIN test set

that contains 1K images from non-overlapping scenes with
the training set in Table.S2.

D. Least-Square Alignment
In Sec.3.2 of the paper, we adopt a least-square align-

ment by minimizing the difference of asD∗t + at and Dt,
where as is the scale term, and at is the shift term. For sim-
plicity, here we drop time-step notations t in depth D and

Table S2. Numerical analysis on the UniSIN test set. Our Dist-
Depth trained on simulation data can reach similar performances
of that trained on real data. Lower errors can be attained compared
with MonoDepth2.

Error MonoDepth2
(Sim)

MonoDepth2
(Real)

DistDepth
(Sim)

DistDepth
(Real)

MAE 0.610 0.571 0.518 0.505
AbsRel 0.175 0.163 0.135 0.130
RMSE 0.742 0.688 0.623 0.611
RMSElog 0.232 0.200 0.159 0.162

Table S3. Performances of converting relative depth into met-
ric depth using linear regression. We convert DPT’s outputs to
metric depth by linear relations from optimizing least-square er-
rors with RANSAC. See the text in Sec. E.

Error Linear Regression
Oracle

MonoDepth2 DistDepth

MAE 0.390 0.295 0.253
AbsRel 0.359 0.203 0.175
RMSE 0.645 0.432 0.374
RMSElog 0.283 0.251 0.213

use D∗i for indexing depth values at the i-th pixel. Using
the above notations, we can write the least-square problem
as

min
as,at

∑
i

‖asD∗i + at −Di‖2, (S1)

Then, we change symbols with
−→
d∗i = [D∗i , 1]

> and −→a =
[as, at]

>. Then Eq.S1 becomes

min−→a

∑
i

‖−→d∗i>−→a −Di‖2, (S2)

which corresponds to the normal form of a least-square
problem. Then, the optimal solution of −→a is

−→a =
∑
i

(−→
d∗i
−→
d∗i
>
)−1∑

i

(−→
d∗iDi

)
. (S3)

E. More Studies
We first present an oracle that converts outputs of DPT

pretraining to metric depth using linear relations with
groundtruth depth, i.e., using red lines shown in Fig. 3 of
the main paper as the converter. We then calculate the depth
errors of all points to the regressed linear relation.

Those linear relations are optimal in terms of minimizing
the least-square errors with RANSAC [6], which discovers
slope and intercept for the conversion under the linear as-
sumption between relative and metric depth in DPT [14].

We exhibit the performances in Table S3 on the VA
dataset. One can observe that this oracle performs much
worse than MonoDepth2 and DistDepth. The results show
that optimal linear mappings are weak in capturing uncer-
tainty in either depth estimation models or data that cause
outliers (in the scatter plots of paper Fig. 3).



Figure S2. Sample images of all datasets used in this work.

We next present numerical ablation studies on the loss
term combinations: (1) without distillation: using LLR and
Ltemp (2) with distillation of the statistical loss only: using
LLR, Ltemp, and Lstat, and (3) full loss terms: using LLR,
Ltemp, Lstat, and Lspat. We show the comparison on the
VA dataset in Fig. S3.

We further study DepthNet’s architecture using ResNet

in Table S4, which shows decreasing errors with deeper net-
works.

Next, we also compare the inference speed in Fig. S4
of convolutional neural networks (CNN) and Dense Vision
Transformer (D-ViT) in DPT.
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Figure S3. Numerical studies on the loss combination. (1) w/o
distillation loss (2) with statistical distillation loss only (3) with
full distillation loss.

Table S4. Numerical studies on the DepthNet architecture
choices. We adopt ResNet of different numbers of layers as
the DepthNet’s architecture and find that deeper ResNet produces
lower errors.

Error ResNet50 ResNet101 ResNet152
MAE 0.261 0.255 0.253
AbsRel 0.182 0.177 0.175
RMSE 0.383 0.377 0.374
RMSElog 0.221 0.217 0.213
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Figure S4. Comparison on inference speed. We test on a laptop
(with Intel Core i7-10875H CPU and RTX 2080 GPU) and com-
pare architectures for DepthNet using convolutional neural net-
work (CNN) and Dense Vision Transformer (D-ViT) introduced
in DPT.

F. Depth-Relevant and Depth-Irrelevant Low-
Level Cues

We illustrate how networks see depth in Fig. S5. A
low-level feature is reasoned as depth-relevant or depth-
irrelevant based on its local regions. A well-trained depth
estimator can separate depth-relevant and depth-irrelevant
features and produce depth changes only at the depth-
relevant positions.

G. More Results
In Fig.S6-S9, we present more comparison with

prior self-supervised monocular depth estimation methods,

Figure S5. Explanations on depth-relevant and depth-
irrelevant low-level cues. Low-Level cues at the red point are
depth-relevant since it contains object occluding boundaries of its
neighborhood. In contrast, low-level cues at the green point are
printed patterns around the same depth. A good depth estimator
is capable of separating depth-relevant and depth-irrelevant low-
level cues.

Figure S6. More Results on the VA dataset that extends Fig.
5 of the main paper. Depth and error maps generated by our
DistDepth and MonoDepth2 are shown.

which are all trained on SimSIN. Our DistDepth predicts
better depth maps, lower errors, and also better 3D point
cloud than other methods. In addition, we demonstrate
downstream applications on 3D photos [18] and depth-
aware AR effects in Fig. S10 and S11. We also present
several failure cases in Fig. S12.



Figure S7. Results on Hypersim. Depth map and textured point cloud comparison. DistDepth shows less distortion on the edge of the bed
in Example (A) and more structured walls and chairs in Example (B) and (C).



Figure S8. (Continued) Results on Hypersim. Our DistDepth has less distortions of highlighted areas in Example (D), (E), and the wall
in (F).



Figure S9. (Continued) Results on Hypersim.



(a) Using Depth Maps from DistDepth

(b) Using Depth Maps from MonoDepth2
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Figure S10. Exemplar depth-aware AR occlusion effects and comparison. We insert several virtual objects into scenes with depth maps
to maintain proper occluding boundaries. Using depth maps from DistDepth creates more accurate occluding boundaries.

(a) Using Depth Maps from DistDepth

(b) Using Depth Maps from MonoDepth2

scene1 scene2 scene3 scene4

scene1 scene2 scene3 scene4

Figure S11. Exemplar 3D photo creation and comparison. We use images and estimated depth maps to create 3D photos by [18]. Four
scenes in two different views are exhibited to show the performances. 3D photos using depth from DistDepth have much less distortions,
especially at occluding boundaries. Zoom in for the best view.

Figure S12. Failure cases. (1) Depth values on glossy surfaces may not be perfectly predicted. (2) Structures of thin objects with motion
blur may be missing. (3) Training data in either SimSIN or UniSIN are mostly rooms (see Fig. S1), and we predict metric depth that is
robust in close ranges. As a result, predictions in semi-open spaces may be less accurate sometimes.
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[17] Thomas Schöps, Johannes L. Schönberger, Silvano Galliani,
Torsten Sattler, Konrad Schindler, Marc Pollefeys, and An-
dreas Geiger. A multi-view stereo benchmark with high-
resolution images and multi-camera videos. In CVPR, 2017.
1

[18] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin
Huang. 3D photography using context-aware layered depth
inpainting. In CVPR, 2020. 4, 8

[19] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In ECCV, 2012. 1

[20] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik
Wijmans, Simon Green, Jakob J Engel, Raul Mur-Artal, Carl
Ren, Shobhit Verma, et al. The replica dataset: A digital
replica of indoor spaces. arXiv preprint arXiv:1906.05797,
2019. 1

[21] Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans,
Yili Zhao, John Turner, Noah Maestre, Mustafa Mukadam,
Devendra Chaplot, Oleksandr Maksymets, et al. Habitat 2.0:
Training home assistants to rearrange their habitat. NeurIPS,
2021. 1

[22] Chaoyang Wang, Simon Lucey, Federico Perazzi, and Oliver
Wang. Web stereo video supervision for depth prediction
from dynamic scenes. In 3DV, 2019. 1

https://www.unrealengine.com/en-US/unreal
https://www.unrealengine.com/en-US/unreal
https://www.unrealengine.com/marketplace/en-US/product/warmharbor
https://www.unrealengine.com/marketplace/en-US/product/warmharbor
https://www.unrealengine.com/marketplace/en-US/product/warmharbor

