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Abstract

This is the supplementary material for the paper:
“URetinex-Net: Retinex-based Deep Unfolding Network
for Low-light Image Enhancement” submitted to the CVPR
2022. We first demonstrate details of the derivation of our
closed-form solution. Besides, we present visual effects
on the unfolding process. Next, we evaluate efficiency in
terms of performance and speed compared with State-of-
the-Arts (SOTA). Finally, we report more qualitative anal-
ysis on three real-world datasets, including LOL dataset,
SICE dataset and MEF dataset.

A. Derivation of closed-form solution

This section provide complete derivation of closed-form
solution to the “Updating rules for P and Q” described in
Sec. 3.2.2 of our submitted paper.

P-subproblem. By differentiating Eq. (5) with respect to
P and setting derivative to 0, we have

∂
(
‖I − P ·Qk−1‖2F + γ‖P −Rk−1‖2F

)
∂P

= 0. (19)

By using ‖P‖2F = Tr(PPT ), Eq. (19) is reformed into:

∂
[
Tr
(
(I − P ·Qk−1)(I − P ·Qk−1)

T
)
+ γ‖P −Rk−1‖2F

]
∂P

= 0,

(20)

where Tr(·) denotes trace of a matrix. Therefore, we can
obtain the following equation:

P ·Qk−1 ·Qk−1 − I ·Qk−1 + γ(P −Rk−1) = 0. (21)

Thus, the closed-form solution to P-subproblem in Eq. (5)
can be derived as

Pk =
γRk−1 + I ·Qk−1

Qk−1 ·Qk−1 + γ1
, (22)

where 1 denotes all-ones matrix.
Q-subproblem. Similarly, by differentiating Eq. (12)

with respect to Q and setting derivative to 0, we have∑
c∈{R,G,B}

(Q ·P (c)
k ·P

(c)
k −I

(c) ·P (c)
k )+λ(Q−Lk−1) = 0.

(23)
Finally, the closed-form solution with regard to Q-

subproblem can be derivated as:

Qk =
λLk−1 +

∑
c∈{R,G,B} I

(c) · P (c)
k∑

c∈{R,G,B} P
(c)
k · P (c)

k + λ1
. (24)

B. Visual effect on unfolding process
As shown in Fig. 1, we provide a visual effect of our un-

folding process to illustrate the advantage of our proposed
URetinex-Net. Apparently, heavy noise distortion is ap-
peared on the initial reflectance layer R0. Through updat-
ing in each stage, noise in reflectance is suppressed while
details are preserved, which indicates the superiority of our
unfolding optimization. Meanwhile, illumination becomes
smoother as the number of stage increases.

C. Efficiency evaluation
Next, we evaluate efficiency in terms of PSNR and run-

ning speed on LOL datasets compared with SOTA methods.
As illustrated in Fig. 2, URetinex-Net performs much better
than other methods in PSNR. Moreover, our method runs
faster than traditional model-based methods, which suffer
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Figure 1. Visual effects of the unfolding process. The reflectance layer step-wise gets rid of noise degradation, while illumination layer
becomes smoother stage by stage. Noted that gamma correction is adopted to illumination layers (L1, L2 and L3) for better visual effects.
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Figure 2. Efficiency evaluation in terms of average values of PSNR
and running time on LOL dataset. Log-scale is used on the x-axis
for illustration.

from time-consuming iterative optimization procedures, es-
pecially RRM, which incorporate noise terms for noise sup-
pression. Although Zero-DCE and RUAS have fast process-
ing speeds, they have limited capacity to reach satisfactory
visual results. In summary, taking both computational ef-
ficiency and visual performance into account, the proposed
URetinex-Net shows promising superiority.

D. Qualitative analysis
In our submitted paper, we have provided sufficient

quantitative results (Table 1) and parts of visual compar-
isons (Figs. 5-6) due to the limit of space. Here, we provide
more qualitative analysis compared with all SOTA meth-
ods, including LIME [3], NPE [8], SRIE [1], LR3M [7],
RRM [4], Retinex-Net [9], KinD [11], Zero-DCE [2],
KinD++ [10], AGLLNet [6] and RUAS [5]. Figs. 3-5
demonstrate the enhanced results on LOL datasets. Specif-
ically, most comparison methods suffer from heavy noise,
including traditional model-based methods, Retinex-Net
and ZeroDCE. KinD, KinD++ and RUAS adopt the post-
processing denoising operations to further restore results,
but it may lead to a loss of details or unnatrual looks. More-
over, RUAS has the risk of over-exposure due to the ig-

norance of reflectance during decomposition. In general,
our URetinex-Net is capable of noise suppression and de-
tail preservation, demonstrating its superiority over SOTA
methods.

Furthermore, we show extensive results to validate the
generalisation performance of our proposed URetinex-Net
without retraining or fine-tuning. Figs. 6-8 show the visual
results on three different scenes in SICE dataset. Obviously,
our URetinex-Net is robust to handle artifact distortion and
over-exposure, which demonstrates generalization ability of
URetinex-Net. Finally, we give complete comparison on
MEF dataset in Figs. 9-11.
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Figure 3. Visual comparison on LOL dataset #22 with SOTA LLIE methods.
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Figure 4. Visual comparison on LOL dataset #79 with SOTA LLIE methods.
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Figure 5. Visual comparison on LOL dataset #669 with SOTA LLIE methods.
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Figure 6. Visual comparison on SICE dataset #1 with SOTA LLIE methods.
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Figure 7. Visual comparison on SICE dataset #82 with SOTA LLIE methods.
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Figure 8. Visual comparison on SICE dataset #114 with SOTA LLIE methods.
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Figure 9. Visual comparison on MEF dataset #Lighthouse with SOTA LLIE methods.
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Figure 10. Visual comparison on MEF dataset #House with SOTA LLIE methods.
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Figure 11. Visual comparison on MEF dataset #Venice with SOTA LLIE methods.
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