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1. More implementation details
We provide more details of the network architecture and

experimental setting. Figure 1 shows the detailed network

architecture of epipolar transformer. Four transformer lay-

ers are adopted to compute the cross-view feature correla-

tion and aggregate the feature. In the figure, B represents

the batch size, i.e. the number of sampled points in one

batch. N denotes the number of input views. C1 and C2
are the channel dimension of the features. We set C1 = 8
and C2 = 8 in all the experiments.

Our method can take an arbitrary number of source im-

ages and does not require the number of source images to

be the same for training and testing. This is because the fea-

tures of multi-view images are first fed into a self-attention

module and then processed by the mean/variance operation,

outputting a fixed-length feature vector that is independent

of the number of input views. For DTU, the network takes

3 and 4 images as input respectively during the training and

testing. For the testing on Tanks & temples and Blended-
MVS, the network takes 7 images as input.

2. Challenging test set of DTU
We create three challenging test subsets focusing on re-

gions with Specular reflection, Shadow and Occlusion, re-

spectively, from the DTU test set. To annotate these regions,

we first select a reference image and two source images. For

the specular reflection and shadow subsets, we select the re-

gions whose appearance is significantly different in the ref-

erence image and the source images due to the influences

caused by specular reflection and shadow, respectively. For

the occlusion subset, we select the regions that are visible in

the reference image and invisible in any of the two source

images. The challenging test subsets contain 602 reference

images and ∼ 100, 000, 000 pixels of the challenging re-

gions in total. Examples of the annotated regions are visu-

alized in Figure 2.
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Figure 1. Network architecture of epipolar transformer.

3. More results of RayMVSNet

We provide more results of RayMVSNet in this section.

Figure 3 shows visual comparisons against the baselines in

terms of the depth estimation. Figure 5 contains additional

qualitative results of RayMVSNet on DTU, Tanks & Tem-

ples, and BlendedMVS. In general, we see that RayMVS-
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Figure 2. Examples of the annotated regions in the challenging

subsets of DTU: Specular reflection (row 1-2), Shadow (row 3-4),

and Occlusion (row 5-6).

Net achieves high-quality reconstruction in various scenes.

To further verify the efficiency, we compare RayMVS-

Net against the baselines by visualizing the relationship be-

tween the overall accuracy of the reconstructed point cloud

and the GPU memory consumption. As shown in Figure 4,

RayMVSNet achieves state-of-the-art performance and re-

quires less GPU memory compared to most of the baselines.

This demonstrates that RayMVSNet is light weight, thanks

to the mechanism of ray-based representation.

Last, we conduct experiments of replacing the MVS-

Net with other MVSNet variants, e.g., UCS-MVSNet, Fast-

MVSNet, and CVP-MVSNet, for coarse depth estimation.

We found consistent improvement of depth estimation for

the alternative backbones. In particular, our method with a

UCS-MVSNet backbone achieves a 0.326 overall score on

the DTU dataset.

4. Explanation of quantitative comparison on
Tanks & Temples

We compared RayMVSNet against the baselines on the

Tanks & Temples dataset. Since the experiment is de-

signed for evaluating the generality of the proposed method,
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Figure 3. Visual comparison of the estimated depth map by

RayMVSNet and the baselines.

Figure 4. Visualizations of the overall reconstruction score and

the GPU memory consumption. RayMVSNet achieves state-of-

the-art performance and is light weight compared to most of the

baselines.

we only compare RayMVSNet to existing learning-based

methods that trained on the DTU dataset. Methods that

have been fine-tuned on other datasets (e.g. Blended-

MVS) are not considered. Those methods include Att-

MVSnet [2], Vis-MVSNet [1], AA-RMVSNet [4], and

EPP-MVSNet [3].



Figure 5. Visualizations of the reconstructed point cloud on DTU, Tanks & temples, and BlendedMVS.
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