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A.1 Contructing Multi-scale Feature Maps for SLPT
As discussed in Section 4.3, we construct multi-level feature maps for ResNet34, as shown in Fig.1. Supposing the feature

map size of k-th stage in ResNet34 is Wk ×Hk × dk, we firstly adopt a 1× 1 CNN layer to reduce the channels from dk to
CI/4. Then, the SLPT crops N patches whose size is PWk ×PHk from each level and resizes these patches to K×K. Note
that PWk × PHk is Wk/4 ×Hk/4 in the initial coarse-to-fine stage and is reduced by half in each following stage. Finally,
the resized patches from different levels are concatenated on the channel dimension which is CI . As the result, the SLPT can
utilize both high level and low level features for face alignment.

H5 W5 d5

H4 W4 d4

H3 W3 d3

H2 W2 d2

5th stage

4th stage

3rd stage

2nd stage

H5 W5 CI/4

H4 W4 CI/4

H3 W3 CI/4

H2 W2 CI/4

1 1 Conv

1 1 Conv

1 1 Conv

1 1 Conv

N K K CI/4

N K K CI/4

N K K CI/4

N K K CI/4

C

N PW5 PH5 CI/4

N PW4 PH4 CI/4

N PW3 PH3 CI/4

N PW2 PH2 CI/4

Crop Local 

Patches

Crop Local 

Patches

Crop Local 

Patches

Crop Local 

Patches

Resize

Resize

Resize

Resize

Concatenate

Figure 1. Constructing multi-level feature maps for SLPT

A.2 Details of comparison on WFLW
The comparison results on WFLW test set and its subsets are tabulated in Table 2. SLPT yields the best performance in

NME and works at SOTA level on all subsets.
*Corresponding Author



Metric Method Testset Pose Expression Illumination Make-up Occlusion Blur

NME(%)↓

LAB [10] 5.27 10.24 5.51 5.23 5.15 6.79 6.32
SAN [2] 5.22 10.39 5.71 5.19 5.49 6.83 5.80

Coord⋆ [9] 4.76 8.48 4.98 4.65 4.84 5.83 5.49
DETR† [1] 4.71 7.91 4.99 4.60 4.52 5.73 5.33

Heatmap⋆ [9] 4.60 7.94 4.85 4.55 4.29 5.44 5.42
AVS + SAN [8] 4.39 8.42 4.68 4.24 4.37 5.60 4.86

LUVLi [4] 4.37 7.56 4.77 4.30 4.33 5.29 4.94
AWing [11] 4.36 7.38 4.58 4.32 4.27 5.19 4.96
SDFL⋆ [7] 4.35 7.42 4.63 4.29 4.22 5.19 5.08
SDL⋆ [6] 4.21 7.36 4.49 4.12 4.05 4.98 4.82
HIH [5] 4.18 7.20 4.19 4.45 3.97 5.00 4.81

ADNet [3] 4.14 6.96 4.38 4.09 4.05 5.06 4.79
SLPT‡ 4.20 7.18 4.52 4.07 4.17 5.01 4.85
SLPT† 4.14 6.96 4.45 4.05 4.00 5.06 4.79

FR0.1(%)↓

LAB 7.56 28.83 6.37 6.73 7.77 13.72 10.74
SAN 6.32 27.91 7.01 4.87 6.31 11.28 6.60

Coord⋆ 5.04 23.31 4.14 3.87 5.83 9.78 7.37
DETR† 5.00 21.16 5.73 4.44 4.85 9.78 6.08

Heatmap⋆ 4.64 23.01 3.50 4.72 2.43 8.29 6.34
AVS + SAN 4.08 18.10 4.46 2.72 4.37 7.74 4.40

LUVLi 3.12 15.95 3.18 2.15 3.40 6.39 3.23
AWing 2.84 13.50 2.23 2.58 2.91 5.98 3.75
SDFL⋆ 2.72 12.88 1.59 2.58 2.43 5.71 3.62
SDL⋆ 3.04 15.95 2.86 2.72 1.45 5.29 4.01
HIH 2.96 15.03 1.59 2.58 1.46 6.11 3.49

ADNet 2.72 12.72 2.15 2.44 1.94 5.79 3.54
SLPT‡ 3.04 15.95 2.86 1.86 3.40 6.25 4.01
SLPT† 2.76 12.27 2.23 1.86 3.40 5.98 3.88

AUC0.1 ↑

LAB 0.532 0.235 0.495 0.543 0.539 0.449 0.463
SAN 0.536 0.236 0.462 0.555 0.522 0.456 0.493

Coord⋆ 0.549 0.262 0.524 0.559 0.555 0.472 0.491
DETR† 0.552 0.285 0.520 0.558 0.563 0.471 0.497

Heatmap⋆ 0.524 0.251 0.510 0.533 0.545 0.459 0.452
AVS + SAN 0.591 0.311 0.549 0.609 0.581 0.516 0.551

LUVLi 0.557 0.310 0.549 0.584 0.588 0.505 0.525
AWing 0.572 0.312 0.515 0.578 0.572 0.502 0.512
SDFL⋆ 0.576 0.315 0.550 0.585 0.583 0.504 0.515
SDL⋆ 0.589 0.315 0.566 0.595 0.604 0.524 0.533
HIH 0.597 0.342 0.590 0.606 0.604 0.527 0.549

ADNet 0.602 0.344 0.523 0.580 0.601 0.530 0.548
SLPT‡ 0.588 0.327 0.563 0.596 0.595 0.514 0.528
SLPT† 0.595 0.348 0.574 0.601 0.605 0.515 0.535

Table 1. Performance comparison of the SLPT and the state-of-the-art methods on WFLW and its subsets. The normalization factor is
inter-ocular and the threshold for FR is set to 0.1. Key: [Best, Second Best, ⋆=HRNetW18C, †=HRNetW18C-lite, ‡=ResNet34]

A.3 Convergence curves of SLPT and DETR
The convergence curves of SLPT and DETR is shown in Fig.2. The DETR achieves 4.71% NME at 391 epochs on WFLW

test set. The SLPT achieves better performance with around 8× less training epochs. With the increasing of training epochs,
the performance of SLPT is improved further, achieving 4.14% NME at 140 epochs.
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Figure 2. Convergence curves of SLPT and DETR on WFLW test set. The learning rate of SLPT is reduced at 120 and 140 epochs; the
learning rate of DETR is reduced at 320 and 360 epochs.

A.4 Evaluation on the input patch size
Each local patch is resized to K × K and then projected into a vector by a CNN layer with K × K kernel size. In this

section, we explore the influence of the patch size on WFLW test set, as tabulated in Table 2. Compared to 7× 7 patches, the
5 × 5 patches lose more information because of the lower resolution, which leads to degradation of the performance. When
the patch size is extended from 7× 7 to 9× 9, the parameters of the CNN layer is doubled, which leads to the overfitting on
the training set. Therefore, we can also observe a slight degradation with 9× 9 patch size, from 4.14% to 4.16% in NME.

Patch size NME(%) FR0.1(%) AUC0.1

5× 5 4.17% 2.76% 0.593
7× 7 4.14% 2.76% 0.595
9× 9 4.16% 2.84% 0.594

Table 2. NME(↓), FR0.1(↓) and AUC0.1(↑) with different patch sizes K ×K on WFLW test set. Key: [Best]

A.5 Evaluation on the number of inherent relation layers
Table 3 demonstrates the influence of inherent relation layer number. The performance of SLPT relies on the inherent

relation layer heavily. When the number of inherent relation layers increases from 2 to 12, We can observe a significant
improvement, from 4.19% to 4.12% in NME. Nevertheless, too many inherent relation layers also increase the parameters
and computational complexity dramatically. Considering the real-time capability, we choose the model with 6 inherent
relation layers as the optimal model.

Layer number NME(%) FR0.1(%) AUC0.1

2 4.19% 2.88% 0.592
4 4.17% 2.84% 0.593
6 4.14% 2.76% 0.595
12 4.12% 2.72% 0.596

Table 3. NME(↓), FR0.1(↓) and AUC0.1(↑) with different patch sizes K ×K on WFLW test set. Key: [Best]



A.6 Further example predicted results and inherent relation maps
We visualize the predicted results and adaptive inherent relation maps for the samples of COFW, 300W and WFLW, as

shown in Fig.3, Fig.4 and Fig.5 respectively. In the inherent relation maps, we connect each point to the point with highest
cross-attention weight. The SLPT tends to utilize the visible landmarks to localize the landmarks with heavy occlusion for
robust face alignment. For other landmark, it relies more on its neighboring landmark.

Figure 3. Further example predicted results and attention maps on COFW (random selection)



Figure 4. Further example predicted results and attention maps on 300W (random selection)

Figure 5. Further example predicted results and attention maps on WFLW (random selection)



References
[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object

detection with transformers. In ECCV, pages 213–229, 2020.
[2] Xuanyi Dong, Yan Yan, Wanli Ouyang, and Yi Yang. Style aggregated network for facial landmark detection. In CVPR, pages

379–388, 2018.
[3] Yangyu Huang, Hao Yang, Chong Li, Jongyoo Kim, and Fangyun Wei. Adnet: Leveraging error-bias towards normal direction in

face alignment. In 2021 ICCV, pages 3060–3070, 2021.
[4] Abhinav Kumar, Tim K. Marks, Wenxuan Mou, Ye Wang, Michael Jones, Anoop Cherian, Toshiaki Koike-Akino, Xiaoming Liu, and

Chen Feng. Luvli face alignment: Estimating landmarks’ location, uncertainty, and visibility likelihood. In CVPR, pages 8233–8243,
2020.

[5] Xing Lan, Qinghao Hu, and Jian Cheng. Revisting quantization error in face alignment. In 2021 ICCVW, pages 1521–1530, 2021.
[6] Weijian Li, Yuhang Lu, Kang Zheng, Haofu Liao, Chihung Lin, Jiebo Luo, Chi-Tung Cheng, Jing Xiao, Le Lu, Chang-Fu Kuo, and

Shun Miao. Structured landmark detection via topology-adapting deep graph learning. In ECCV 2020, pages 266–283, Cham, 2020.
Springer International Publishing.

[7] Chunze Lin, Beier Zhu, Quan Wang, Renjie Liao, Chen Qian, Jiwen Lu, and Jie Zhou. Structure-coherent deep feature learning for
robust face alignment. IEEE Transactions on Image Processing, 30:5313–5326, 2021.

[8] Shengju Qian, Keqiang Sun, Wayne Wu, Chen Qian, and Jiaya Jia. Aggregation via separation: Boosting facial landmark detector
with semi-supervised style translation. In ICCV, pages 10152–10162, 2019.

[9] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang
Wang, Wenyu Liu, and Bin Xiao. Deep high-resolution representation learning for visual recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 43(10):3349–3364, 2021.

[10] Wenyan Wu, Chen Qian, Shuo Yang, Quan Wang, Yici Cai, and Qiang Zhou. Look at boundary: A boundary-aware face alignment
algorithm. In CVPR, pages 2129–2138, 2018.

[11] Xiangxin Zhu and Deva Ramanan. Face detection, pose estimation, and landmark localization in the wild. In CVPR, pages 2879–
2886, 2012.


