
Appendix

In this supplementary material, we first provide some
details mentioned in main text in Sec.A. We then report
more exploration studies of our method in Sec.B and pro-
vide some visualizations in Sec.C.

A. Experiment Details
A.1. Training Details

ImageNet Pre-training. We follow DeiT [?, ?] and ap-
ply random cropping, random horizontal flipping, label-
smoothing regularization, mixup, CutMix, and random
erasing as data augmentations. We initialize the weights
with a truncated normal distribution. During training, we
employ AdamW with a momentum of 0.9, a mini-batch size
of 128, and a weight decay of 5 × 102 to optimize mod-
els. The initial learning rate is set to 1× 103 and decreases
following the cosine schedule. All models are trained for
300 epochs from scratch on 8 V100 GPUs. For test in Im-
ageNet [?], we apply a center crop on the validation set,
where a 224× 224 patch is cropped to evaluate the classifi-
cation accuracy.
Finetune on Tracking. We finetune the whole model on the
tracking datasets. In particular, for each pair of search/tem-
plate images from the training dataset, we compute the
losses based on the classification and regression outputs
from the prediction head. We use standard cross-entropy
loss for the classification loss: all pixels within the ground-
truth box are regarded as positive samples and the rest are
negative. We use GIoU [?] loss and L1 loss for the regres-
sion loss. We load the pre-trained SBT parameters. We use
8 tesla V100 GPUs and set the batch size to be 20 for each
GPU. Since our model does not have batch normalization, it
is not sensitive to the batch size. The batch size can be flex-
ibly adjusted based on the hardware. The search area factor
of template and search image is set to 2 and 4, respectively.
For GOT-10k training set, the sample pairs of each epoch is
50, 000. The learning rate is set to be 10−4 for the feature
extraction network, and 10−3 for the rest. The learning rate
decays at the 30th, 50th epoch. We finetune the model for
100 epochs. For full-dataset training, it includes the train
subsets of LaSOT [?], GOT-10K [?], COCO2017 [?], and
TrackingNet [?]. All the forbidden sequences defined by
the VOT2019 challenge are abandoned. The pairs of train-
ing images in each iteration are sampled from one video se-

C C C A A AC

channel maps Conv. weighted sum C correlation A multi-head attention

(a) (b) (c)

Figure 1. (a): a simple Siamese tracking baseline; (b): Siamese
tracking baseline with layer-wise aggregation; (c): correlation-
embedded structure in SBT.

quence or constructed by a static image. On static images,
we also construct an image pair by applying data augmenta-
tion like flip, brightness jittering and target center jittering.
Training loss. To validate the generality of our framework,
we adopt a vanilla anchor-free prediction head following [?]
which employs the standard binary cross-entropy loss for
classification, which is defined as

Lcls = −
∑
j

[yj log(pj) + (1− yj)log(1− pj)], (1)

where yj denotes the ground-truth label of the j-th feature
token, yj = 1 denotes foreground, and pj denotes the pre-
dicted confidence value belong to the foreground. For re-
gression, we apply two kinds of loss: ℓ1-norm loss L1(., .)
and the generalized IoU loss LGIoU (., .) [?]. The regression
loss is as follows:

Lreg =
∑
j

1{yj=1}[λGLGIoU (bj , b̂) + λ1L1(bj , b̂)], (2)

where yj = 1 denotes the positive sample, bj denotes the
j-th predicted bounding box, and b̂ denotes the normalized
ground-truth bounding box. We set λG = 5 and λ1 = 7 and
12 for classification loss in our experiments.
Inference Details. For SBT tracker, during inference, the
regression head and classification head generate two re-
sponse maps which embed estimated size shapes and loca-
tion confidence values, respectively. The maximum confi-
dence value and its bounding box size are chosen to be final
predicted target. The template and search image size are
chosen to 128 × 128 and 256 × 256, respectively. To vali-
date the effectiveness of our feature network, no other tricks
such as template update and online module are adopted.
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Figure 2. Comparison to the state-of-the-art methods on the
GOT10k dataset. The radius of a circle represents the number of
FLOPs of the model. Multiple trackers (with suffix “CA”) can
benefit from our correlation-aware features. We do not show the
Flops of DCF methods because of the online learning.

Ablation Details. In Fig. 1, It shows the difference among
a simple Siamese tracking baseline, Siamese tracking base-
line with layer-wise aggregation and correlation-embedded
structure in SBT. For the Siamese pipeline, the template fea-
tures are center-cropped with he spatial size of 7 × 7, and
then perform correlation with the search features. For cross
attention, the template features dose not need to be cropped
for the strong global modelling of attention scheme. The
channel dimension of the template and search features are
adjusted to 256 by a convolutional layer, which is the same
with SiamRPNpp [?].

A.2. Correlation-Aware Trackers

SiamFCpp-CA: SiamFCpp [?] is a recent typical
Siamese tracker. We replace the GoogLeNet [?] with the
modified SBT-small version. DiMP-CA: DiMP [?] is a
modern DCF tracker.. For training and inference, we feed
the search and template image pair to modified SBT-base
to obtain the correlation-aware search features, then it re-
places the original search features extracted by ResNet [?].
STARK-CA: STARK [?] is a recent strong Transformer-
based tracker. We replace the ResNet-50 [?] in STARK with
modified SBT-small. STM-CA: STM [?, ?] is a video ob-
ject segmentation method. We replace the original ResNet-
50 [?] to prove that our network can also be used in pixel-
wise tracking.

A.3. Performance, Model Size and Flops

As shown in Fig. 2, we provide a comprehensive com-
parison in GOT-10k in terms of AO, model size and com-
putation Flops between our methods and other trackers.

Setting model Pre. Low Mid High SR50 SR75 AO

A1 SBT-base ✓ B6 B8 B10 75.3 58.6 65.0
A2 SBT-base ✓ B8 B9 B10 70.8 52.9 61.0
A3 SBT-base ✓ B6 B9 B10 73.1 53.9 63.2
A4 SBT-base ✓ B4 B9 B10 75.2 58.0 64.6
A5 SBT-base ✓ B2 B9 B10 75.7 59.3 65.7

Table 1. Position pattern studies on SBT-base model. Results are
from GOT-10k test set. B6 denotes the 6th block in third stage.
Pre. denotes whether use pre-trained weights or not.

Setting model Pre. N1 N2 N3 SR50 SR75 AO

B1 SBT-base ✗ 4 4 12 72.3 54.9 62.3
B2 SBT-base ✗ 4 4 14 74.4 57.3 64.0
B3 SBT-base ✗ 2 2 10 72.4 52.4 61.5
B4 SBT-base ✗ 2 2 13 72.3 54.1 62.0
B5 SBT-base ✗ 2 2 15 73.4 55.7 63.1

Table 2. Block pattern studies on GOT-10k test set. N1 denotes
the block number in the first model stage. other settings including
interleaved CA block and channel dimension are the same.

B. More Studies on Model Variants

We further choose the base version of SBT to explore the
impacts of model variants on tracking performance.

B.1. Position Pattern.

In Tab. 1, we set the total number of EoC-CA block to be
3 and ablate their position pattern during inference. When
the last two correlation operation are set to the 9th and 10th
block, moving the first correlation block to the earlier po-
sition achieves better results (63.2% of A3 vs. 64.6% of
A4 vs. 65.7% of A5). It clearly validates that there is a
strong correlation between earliest EoC-CA position and
tracking performance. It also points out our key insight
that early-cross generates target-dependent features which
help tracker to see better. From the comparison among
65.0% of A1, 61.0% of A2 and 63.2% of A3, the inter-
leaved EoC-SA/EoC-CA pattern outperforms the Siamese-
style and earlier-cross design. It also enlighten us to choose
a interleaved design pattern of SBT tracking. The underly-
ing reason is related to the feature representation: EoC-SA
block can refine the template/search feature after the cor-
relation, resulting in a more expressive feature space for
matching. We also point out that the position pattern can
be flexibly designed based on the requirements from future
researcher/engineer.

B.2. Block Number.

In Tab. 2, we keep other network factors be the same and
ablate their block numbers in different stage. 64.0% of B2

achieves the best tracking performance which has moderate
number of blocks (4/4) in the shallow model stage and the
second large number of blocks (14) in the deep stage. It
indicates that a moderate size of blocks in shallow stage is
necessary. Putting the most of blocks in the third stage is



Setting model Pre. C1 C2 C3 SR50 SR75 AO

C1 SBT-base ✗ 64 128 256 74.8 55.1 63.6
C2 SBT-base ✗ 32 64 128 69.8 46.5 58.7
C3 SBT-base ✗ 96 192 384 74.3 55.3 63.7
C4 SBT-base ✗ 128 256 512 73.0 55.2 62.8
C5 SBT-base ✗ 32 64 512 72.0 51.1 61.1
C6 SBT-base ✗ 64 128 512 72.8 52.7 61.8
C7 SBT-base ✗ 128 256 512 74.1 55.8 63.6

Table 3. Channel dimension studies on GOT-10k. C1 denotes the
channel dimension in the first model stage. other settings including
interleaved CA block and block number are the same.

more practical since the spatial size of features is reduced.
Obviously, the tracking performance is highly related the
size of overall model. Finally, it enlightens us that we can
design different versions of SBT trackers to meet the re-
quirements on speed and model size. It is also quite prac-
tical and easy to be implemented by stack different number
of EoC blocks.

B.3. Channel Dimension.

In Tab. 2, we keep other network factors be the same and
ablate their channel dimension in different stage. Since the
channel dimension is quite essential to the model size of
SBT, it is vital to investigate their impacts on tracking per-
formance. It is natural that larger dimension in each stage
can achieve a better performance which also increases the
model size (63.6% of C1, 63.7% of C3 and 63.6% of C7).
It is quite interesting to observe that the gap between shal-
low stage and deep stage is harmful to the performance.
When the shallow stage is set to have 64 and 128 channel di-
mension, then the third stage with 512 dimension performs
worse than that with 256 dimension(63.6% of C1 vs. 61.8%
of C6). It indicates that we should adopt a progressive incre-
ment design for the channel dimension in SBT. Moreover,
too much channels for the shallow stage encoding seems
not helpful but increases the model size a lot (63.6% of
C1 vs.63.6% of C7). In summary, it is more practical to
choose some channel dimension numbers which are widely
seen in CNN networks. We can also modify the channel di-
mensions based on the requirements on different speed and
performance.

C. Visualization Result
C.1. Attention Visualization

As shown in Fig. 3, the attention weights focus on the
background context of the search area in the shallow stage.
We also vividly observe that it effectively suppresses non-
target features in the search image layer by layer. It clearly
illustrates that our attention block can discriminate the dis-
tractors to some extent. In the last block, the attention
weight is changed to an uniform distribution which indi-
cates that the search features are ready to the prediction net-
works. Our Single Branch Transformer (SBT) network al-
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Figure 3. Cross attention map in each stage of SBT tracker.
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Figure 4. Visualization of classification map on three cases. (a)
denotes suitable template with distractors. (b) denotes template
drift with closely attached distractors. (c) denotes template drift
with distractors on the edge.

lows the features of the two images to deeply interact with
each other at the stage of feature extraction which can have
dynamic instance-varying behaviors.

C.2. Response Visualization

As shown in Fig. 4, we visualize the hard case (bas-
ketball video) with numerous distractor objects. Our
correlation-aware features can discriminate the distractors
in a fine-grained level. When the template drifts, our SBT
tracker can also tend to make a more reasonable choices.
When time index is 214, the man with white clothes are
suppressed in SBT while has higher reponse value in other
three models. The distractor object with green clothes is
almost the same the target which can not be identified by
human. Thus, it is reasonable to have high response values
for the tracker. The other three models perform worse than
SBT. When the time index is 464, though the distractor ob-
ject with green clothes is similar to the target, but can be
identified by the white number on the clothes. SBT identi-
fys this case successfully while other three fails. It clearly
indicates that SBT can have more fine-grained discrimina-
tive ability among those appearance-based methods.



Figure 5. Failure case. SBT tracker (base) fails on the case of
occluded target/out of search region.

C.3. Failure Case

When the target object is occluded with distractor ob-
jects, together with appearance changes, the pairwise track-
ing pipeline is hard to figure out the target. It is also
commonly seen in many Siamese trackers. Therefore, our
framework struggles to handle the heavy occlusion (e.g.,
Fig 5) or out-of-view. Another potential limitation of our
work is that modern scientific computation packages are not
friendly to fast attention computation.

C.4. TSNE Visualization of Features

In Fig. 6 and Fig. 7, we visualize the TSNE of features
from our target-dependent network and standard target-
unaware Siamese extraction network. When the our SBT
network goes deeper, the features belonging to the target
(green) become more and more separated from the back-
ground and distractors (pink). In the meantime, the search
features from the Siamese extraction are totally target-
unaware which heavily rely on the separated correlation
step to discriminate the targets from background.

C.5. Visualization of Correlation-Aware Trackers

In Fig. 8, we visualize the tracking results of SiamFCpp
(first row), SiamFCpp-CA (second row), our SBT tracker
(third row) on the challenging sequences from OTB100.
We can see that SBT shows stronger discriminative ability
and better accuracy throughout tracking. The reponse map
of SBT is more centralized and much higher comparing to
the background pixels which shows the tracker preserves
more spatial information and more discriminative towards
the disctractor objects. We can also observe that SiamFCpp-
CA has more stronger discriminative ability than original
SiamFCpp with standard Siamese extraction network to-

wards distractor objects and background clutters. The re-
sponse map from our correlation-aware features are more
discriminative towards background clutters and more suit-
able for a instance-level task.



Figure 6. TSNE [?] visualizations of search features in correlation-embedded SBT tracker when feature networks go deeper.

Figure 7. TSNE [?] visualizations of search features in SBT tracker with Siamese-like extraction when feature networks go deeper.



Figure 8. Visualization tracking results of SiamFCpp (first row), SiamFCpp-CA (second row), our SBT tracker (third row) on the chal-
lenging sequences from OTB100. We can see that SBT shows stronger generalization ability and better accuracy throughout tracking.
SiamFCpp-CA has more stronger discriminative ability than original SiamFCpp with standard Siamese extraction network towards dis-
tractor objects and background clutters. Best viewed with zooming in.


