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In this supplement, we present details on the implemen-
tations of our DeepBDC and the counterparts. Besides,
we conduct experiments providing additional ablation study
and comparison. We finally show BDC’s ability to charac-
terize non-linear dependence. The source code is available
at http://www.peihuali.org/DeepBDC.

S1 Implementations
S1-1 Benchmarks

miniImageNet The miniImageNet [S-22] is a few-shot
benchmark constructed from ImageNet [S-6] for general
object recognition. It consists of 100 classes each of which
contains 600 images. Following previous works [S-4, S-
25, S-26], we use the splits provided by [S-18], which in-
volves 64 classes for meta-training, 16 classes for meta-
validation and the remaining 20 classes for meta-testing.

tieredImageNet The tieredImageNet [S-19] is also a few-
shot benchmark for general object recognition. It is con-
structed from ImageNet [S-6] as well, which, different from
miniImageNet, considers the hierarchical structure of Ima-
geNet. This dataset contains 608 classes from 34 super-
classes and a total of 779,165 images. Among these classes,
20 super-classes (351 classes) are used for meta-training,
6 super-classes (97 classes) for meta-validation and the re-
maining 8 super-classes (160 classes) for meta-testing.

CUB Caltech-UCSD Birds-200-2011 [S-23] (CUB) dataset
is a widely used fine-grained categorization benchmark.
This dataset contains 200 bird classes with 11,788 im-
ages in total. We use the splits of [S-4], in which
the total classes are divided into 100/50/50 for meta-
training/validation/testing. Following [S-4, S-14, S-1], we
conduct experiments on CUB with the original raw images,
instead of cropped images via annotated bounding boxes [S-
26, S-27].

miniImageNet → CUB Chen et al. [S-4] build the cross-
domain task for assessing the domain transfer ability of the
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models. In this setting, all 100 classes of miniImageNet are
used for meta-training, while the models are evaluated on
the meta-testing set (50 classes) of CUB.

miniImageNet→ Aircraft Aircraft [S-15] contains 10,000
images from 100 classes. We perform meta-training on
the whole miniImageNet; we adopt the splits on Aircraft
proposed by [S-25], where 25 classes are used for meta-
validation and 25 classes are for meta-testing. Same as [S-
25], we conduct experiments with the images cropped by
using the bounding box annotations.

miniImageNet → Cars Stanford Cars [S-10] (Cars) con-
tains 196 classes and a total 16,185 images. We follow the
splits of [S-13] to build the meta-validation set (17 classes)
and meta-testing set (49 classes). Similar to the other cross-
domain benchmarks, the full miniImageNet is used as meta-
training set.

S1-2 Architectures

For fair comparisons with previous methods, we use
two kinds of networks as backbones, i.e., ResNet-12 and
ResNet-18. Following previous practice, the input resolu-
tion of images is 84×84 for ResNet-12, and 224×224 for
ResNet-18, respectively. Besides, we use higher capacity
models, i.e., ResNet-34 with input images of 224×224 and
its variant fit for input images of 84×84.

As in [S-21, S-11, S-16, S-25], ResNet-12 consists of
four stages each of which contains one residual block. The
widths of the residual blocks of the four stages are [64, 160,
320, 640]. Each residual block has three 3×3 convolution
layers with a batch normalization and a 0.1 leaky ReLU.
Right after every block except the last one, a 2×2 max
pooling layer is used to down-sample the feature maps. We
adopt ResNet-18 and ResNet-34 proposed in [S-8] with the
last down-sampling being removed. The architecture of the
variant of ResNet-34 is same as that of ResNet-12, except
that the numbers of residual blocks of the four stages are [2,
3, 4, 2], instead of [1, 1, 1, 1] in ResNet-12.



Method Hyper-params miniImageNet tieredImageNet CUB miniImageNet→ CUB/Aircraft/Cars

Meta DeepBDC
Initial LR 1e-4 5e-5 1e-3 5e-5

LR decay [40, 80]*0.1 [70]*0.1 [40, 80]*0.1 [70]*0.1

Epochs 100 100 100 100

STL DeepBDC
Initial LR 5e-2 5e-2 5e-2 5e-2

LR decay [100,150]*0.1 [40,70]*0.1 [120,170]*0.1 [100,150]*0.1

Epochs 180 100 220 180

Table S-1. Hyperparameter settings of our DeepBDC.

S1-3 Training and Evaluation Protocols

Training During training, following [S-4, S-25, S-27],
we use standard data augmentation including random re-
sized crop, color jittering and random horizontal flip on all
benchmarks. We adopt the SGD algorithm with a momen-
tum of 0.9 and a weight decay of 5e-4 to train our pro-
posed DeepBDC networks. For ResNet-12, we apply Drop-
Block [S-7] regularization during training as in [S-26, S-
11, S-5]. We tune the number of epochs and the scheduling
of learning rate (LR) on different benchmarks.

For our Meta DeepBDC which is based on meta-learning
framework, we train the model by uniformly sampling
episodes (tasks) from the meta-training set. Following pre-
vious works [S-5, S-25, S-27], right before performing the
episodic training, we pre-train the networks on the full
meta-training set whose weights are used as initialization.
To sample a 5-way 1-shot task, we randomly pick up 5
classes each with 1 support image and 16 query images se-
lected at random. Similarly, every 5-way 5-shot task con-
tains 5 support images and 16 query images. Tab. S-1 (upper
part) shows the hyper-parameter settings for training Meta
DeepBDC on all benchmarks. Let us take miniImageNet as
an example: the initial learning rate (LR) is 1e-4, which is
divided by 10 at epoch 40 and 80, respectively, and training
proceeds until epoch 100. We adopt the model achieving
highest accuracy on the meta-validation for evaluation on
the meta-testing set.

Our STL DeepBDC is based on Good-Embed [S-21],
which falls into simple transfer learning framework, not re-
quiring episodic training. In practice, we train the network
for a common multi-way classification task, using a soft-
max classifier via a standard cross-entropy loss on the whole
meta-training set spanning all classes. We set the batch size
to 64 across all benchmarks. Furthermore, following [S-
21], we conduct sequential self-distillation to distill knowl-
edge from the trained model. The networks thus obtained
are used as embedding models for extracting features (i.e.,
outputs of the last convolution layer of one network). The
hyper-parameter settings for STL DeepBDC are shown in
Tab. S-1 (bottom part).

Evaluation We uniformly sample episodes (tasks) from
the meta-testing set to evaluate the models’ performance.
Following [S-4], we build 5-way 1-shot or 5-shot setting,
respectively, both with 15 query images. We report mean
accuracy of 2,000 episodes with 95% confidence intervals.
Our Meta DeepBDC does not require additional training, so
we directly performing testing. Our STL DeepBDC needs
to train a linear classifier for each episode using the trained
model for feature extraction. We implement the logistic re-
gression via L-BFGS-B algorithm and linear SVM via LIB-
SVM based on scikit-learn software package [S-17]. We
perform L2 normalization for the features in logistic regres-
sion and SVM; furthermore, we standardize the normalized
features before fed to SVM. Implementation of the soft-max
classifier is based on PyTorch, where we adopt SGD algo-
rithm with a batch size of 4, a momentum of 0.9, a weight
decay of 1e-3 and a learning rate of 1e-2.

S2 Implementation of the Counterparts

ProtoNet We use implementation of Chen et al. [S-4]
which is public available 1.

ADM We use the code released by the authors [S-12] 2.
Differently, we add one 1×1 convolution for dimension re-
duction before computing mean vectors and covariance ma-
trices. As the original method performs unsatisfactorily, we
use a different one fusing ADM and DN4 [S-13]. Specifi-
cally, we attach independently the ADM branch and DN4
branch to the backbone, both with individually learnable
scaling parameters. Next, the negative KL-divergence score
and Image-to-Class (I2C) score are separately fed to soft-
max and are then added for the final cross entropy loss. We
combine Meta DeepBDC and DN4 similarly.

CovNet We mainly follow implementation of the authors
[S-24] 3. Practically, we have two differences: (1) we in-
troduce a 1×1 convolution for dimension reduction, and (2)
for 5-way 1-shot classification, we use the inner product as
the metric, rather than the Frobenious norm which produces
poor results.

1https://github.com/wyharveychen/CloserLookFewShot
2https://github.com/WenbinLee/ADM
3https://github.com/daviswer/fewshotlocal



Method
ProtoNet† Good-Embed† Meta DeepBDC STL DeepBDC

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ResNet-12 62.11 80.77 64.98 82.10 67.34 84.46 67.83 85.45

ResNet-34 64.56 81.16 66.14 82.39 68.20 84.97 68.66 85.47

∆ 2.45 0.39 1.16 0.29 0.86 0.51 0.83 0.02

Table S-2. Comparison of different capacity models on
miniImageNet with input images of 84×84. The ResNet-34 model
is a variant of [S-8] which is described in Sec. S1-2. † Reproduced
with our setting.

Method
ProtoNet† Good-Embed† Meta DeepBDC STL DeepBDC

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ResNet-18 80.90 89.81 77.92 89.94 83.55 93.82 84.01 94.02

ResNet-34 80.58 90.11 79.33 90.10 85.25 94.31 84.69 94.33

∆ -0.32 0.30 1.41 0.16 1.70 0.49 0.68 0.31

Table S-3. Comparsion of different capacity models on CUB with
input images of 224×224. Here we use ResNet-34 proposed in [S-
8]. † Reproduced with our setting.

For all of the aforementioned methods, we remove the
last down-sampling of the backbones. Following the pre-
vious practice [S-25, S-5, S-28], we employ the weights
of pre-trained models as initialization before performing
episodic training.

S3 Additional Experiments
This section introduces additional experiments to ablate

our DeepBDC and to compare with the counterparts.

S3-1 On prototype in Meta DeepBDC

In Meta DeepBDC, for the 5-shot setting, the prototype
of a support class is computed as the average of BDC ma-
trices of 5 support images belonging to this class. Here,
we evaluate two other options for computing the prototype.
(1) We average features of 5 support images, and then the
averaged features are used to compute the BDC matrix as
the prototype. (2) We concatenate features of 5 support im-
ages for computing the BDC matrix as the prototype. These
two methods achieve accuracies (%) of 82.36 and 83.74 on
miniImageNet, respectively, which are lower than the accu-
racy obtained by averaging 5 support BDC matrices (84.46).

S3-2 Effect of Higher Capacity Models

To evaluate the effect of higher capacity models, we
conduct experiments on CUB using the ResNet-34 with
224×224 input images, and on miniImageNet using the
variant of ResNet-34 with input images of 84×84. We com-
pare our Meta DeepBDC and STL DeepBDC with their re-
spective baselines, i.e., ProtoNet and Good-Embed.

The comparison on miniImageNet is shown in Tab. S-

Method
5×5 10×10 21×21

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNet [S-20] † 61.81 79.62 62.11 80.77 61.45 80.00

Good-Embed [S-21] † 65.73 83.08 64.98 82.10 64.68 81.85

Meta DeepBDC 66.74 83.83 67.34 84.46 66.83 84.20

STL DeepBDC 67.76 85.39 67.83 85.45 67.44 85.44

Table S-4. Accuracy (%) against number of features on
miniImageNet for 5-way classification. † Reproduced with our
setting.

2. It can be seen that, for every method with either setting,
the accuracy obtained by using high-capacity ResNet-34 is
higher than that using ResNet-12. Among them, the im-
provements of ProtoNet and Good-Embed for 1-shot task
are significant (over 1 percentage points). Despite the im-
provements, our Meta DeepBDC and STL DeepBDC out-
perform their corresponding baselines by large margins.
According to Tab. S-3 which presents results on CUB, we
can see that overall all methods improve when using higher-
capacity ResNet-34, while the improvements of ProtoNet
are not significant. Again, we observe that our methods are
significantly superior to their baselines.

S3-3 Effect of Feature Number on DeepBDC

To obtain more convolutional features, CTX [S-3] re-
moves the last down-sampling in the backbone networks,
while ADM [S-12] removes the last two. Similar to them,
we also remove down-sampling. On miniImageNet, we
evaluate the effect of down-sampling on our DeepBDC. As
the input resolution is 84 × 84 for ResNet-12, the spatial
size of feature maps outputted by the original backbone is
5 × 5 and thus we have a total of 25 features; the spatial
sizes become 10×10 and 21×21 if the last down-sampling
and the last two are eliminated, respectively.

Tab. S-4 summarize the results. We first notice that
variation of feature number has minor effect on our STL
DeepBDC for either 1-shot or 5-shot task. Regarding our
Meta DeepBDC, it can be seen that for both 1-shot and 5-
shot tasks, the accuracy increases slightly when the number
of features is 100, but then decreases when provided with
441 features. At last, we note that ProtoNet and Good-
Embed achieves individual best results when the feature
number is 100 and 25, respectively. Throughout the main
paper, we report results with removal of the last down-
sampling.

S3-4 Comparison of Latency of Meta-training Task

In the main paper, we compare the latency of meta-
testing task. Here, we give additional comparison for meta-
training task, which is also important in practice. The la-
tency is measured on miniImageNet with the backbone of
ResNet-12. Following the setting of DeepEMD [S-27],



Method
Meta-training Meta-testing Accuracy

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNet [S-20] † 304 365 115 143 62.11 80.77

ADM [S-12] † 908 967 199 221 65.87 82.05

CovNet [S-24] † 310 374 120 144 64.59 82.02

DeepEMD [S-27] >80K >106 457 12,617 65.91 82.41

Meta DeepBDC 505 623 161 198 67.34 84.46

STL DeepBDC – 184 245 67.83 85.45

Table S-5. Comparison of latency (ms) for 5-way classification
on miniImageNet. † Reproduced with our setting.

we adopt QPTH solver [S-2] in meta-training and OpenCV
solver in meta-testing, using the code released by the au-
thors4.

Tab. S-5 shows comparison results for 5-way classifica-
tion; for reference, we also include latency of meta-testing
task and recognition accuracies which have been discussed
in the primary paper. As regards the meta-training, we
find that ProtoNet and CovNet are fastest, while our Meta
DeepBDC is somewhat slower than them. Though the meta-
testing speed of ADM is comparable to that of our method,
its meta-training latency is much larger than ours; the reason
is that backpropagation of ADM involves GPU-unfriendly
matrix inversions. Notably, DeepEMD is at least 80 times
slower for 1-shot and 1000 times slower for 5-shot than the
other methods; we mention that FRN also observes the big
latency of DeepEMD [S-25].

S3-5 Effect of Channel Number on DeepBDC and
the Counterparts

As described in the main paper, both of CovNet
and ADM need to estimate second moments, leading to
quadratic increase of representations in channel number d.
Therefore, for fair comparison, we also add a 1 × 1 convo-
lution for them to reduce the number of channels. Dimen-
sion reduction is hurtful for ProtoNet and DeepEMD, so for
them we leave the original channel as it is.

Fig. S-1 plots the curves of accuracies as a function of
d. In light of the curves, we can draw several conclusions
as follows. (1) The channel number d has non-trivial ef-
fect on ADM and CovNet. The accuracies (%) of ADM
and CovNet reach the highest values when d = 196 (82.05)
and d = 256 (82.02), respectively. Their accuracies drop
gradually when d becomes larger, and when d = 640, they
achieve accuracies only slightly higher than ProtoNet. (2)
Across all values of d, both instantiations of our DeepBDC
clearly perform better than the competing methods.

We mention that our re-implementation non-trivially im-
proves performance of CovNet and ADM, providing fair
and competitive baselines. Besides, these results show that

4https://github.com/icoz69/DeepEMD
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Figure S-1. Accuracy as a function of channel number d for 5-way
5-shot classification on miniImageNet.

dimension reduction plays an important role for second
moment-based methods.

S4 Linear and Non-linear Relation Modeling
One of the favorable properties of Brownian Distance

Covariance (BDC) is the ability to model both linear and
non-linear dependency between random variables X and
Y . In contrast, traditional covariance can only model linear
relations. To facilitate visual understanding, we consider
five simulated examples of bivariate distributions [S-9], i.e.,
“W-shape”, “Diamond”, “Parabola”, “Two parabolas” and
“Circle”, and two examples we developed, i.e., “Butterfly”
and “Heart”, respectively. In these examples, two random
variables X and Y have different kinds of non-linear rela-
tionships. Also, we simulate seven kinds of linear relations
based on HHG package 5. For each set of observation pairs,
we compute the classical correlation

Corr(X,Y ) =
cov(X,Y )√

cov(X,X)
√

cov(Y, Y )
(S-1)

and Brownian distance correlation

BDCorr(X,Y ) =
BDC(X,Y )√

BDC(X,X)
√
BDC(Y, Y )

(S-2)

Here cov(X,Y ) and BDC(X,Y ) respectively denote the
covariance and Brownian distance covariance. Naturally,
cov(X,X) and BDC(X,X) denote variance and Brownian
distance variance of X , respectively.

Fig. S-2 shows the scatter plots of the simulated exam-
ples together with the values of correlation and Brownian
distance correlation. From Fig. S-2a, we can see that for all
non-linear relations Corr(X,Y ) = 0, indicating that clas-
sical correlation fails to model such complex relations; on
the contrary, Brownian distance correlation can characterize

5https://cran.r-project.org/web/packages/HHG/index.html



(a) Non-linear relations.

(b) Linear relations.

Figure S-2. Comparison of linear and non-linear relation modeling between classical Correlation (Corr) and Brownian Distance Correlation
(BDCorr). This illustration was inspired by D. Boigelot.

the non-linear dependencies. As shown in Fig. S-2b, com-
pared to correlation, Brownian distance correlation has sim-
ilar capability to model linear relations, except that it can-
not distinguish the orientation as it is always non-negative;
besides, both of them cannot reflect the slope of linear rela-
tions.
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