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A. More Comparison with State-of-the-arts

A.1. Quantitative Comparison

We compare our PGNet training on different datasets
with other SOTA SOD methods on ECSSD [15] with 1,000
images, PASCAL-S [5] with 850 images and HKU-IS [4]
with 4,447 images. As can be seen in Tab. 3, our PGNet-D
and PGNet-DH outperforms other methods by a large mar-
gin on the three low-resolution datasets, especially in terms
of the metric Sm. The high performance on Sm means that
our methods can generate saliency maps with high struc-
tural similarity to ground truth (GT) [2]. This is consistent
with our expected results, as compared to the multi-stage
approaches, our method can obtain a full view of a salient
object from a high-resolution view, avoiding the problem of
losing some small parts which is easy to happen at low reso-
lution. What’s more, we show the PR curves on three high-
resolution datasets in Fig. 1. It’s clear that the PR curve of
our method is much higher than others.

A.2. Visual Comparison

We argue that visual comparisons in high-resolution
tasks are more important than in low-resolution tasks. This
is due to the fact that the possible loss of some minor details
does not have a significant impact on the pixel-wise met-
rics such as MAE, as the detailed pixels represent a small
percentage of the total. However, these details may be im-
portant for downstream tasks. We therefore performed more
visual comparisons to demonstrate the superiority of our ap-
proach, which can be seen in Fig. 2 and Fig. 3. The repre-
sentative examples in the two pictures are from HRSOD-
TE [16] and UHRSD-TE respectively.

A.3. PGNet of Resnet-50 Architecture

For a fair comparison, we show the performance of
PGNet with Swin [6] replaced by Resnet-50 [3] compared
to other high-resolution methods shown in Tab. 1. It can
be seen that even after replacing Swin used on the low-
resolution branch, our method still outperforms than other
methods on the high-resolution datasets with a faster speed.

Table 1. Quantitative comparisons among high-resolution meth-
ods and our PGNet of Resnet-50 architecture. The three meth-
ods are all trained on DUTS-TR [10] and HRSOD-TR [16] mixed
dataset. The best two results are in red and green fonts.

Ours-R HRSOD DHQSOD

FMax
β 0.931 0.905 0.922

MAE 0.024 0.030 0.022
Eξ 0.940 0.934 0.947HRSOD-TE

Sm 0.925 0.896 0.920

FMax
β 0.940 0.899 0.938

MAE 0.014 0.026 0.012
Eξ 0.961 0.955 0.947DAVIS-S

Sm 0.937 0.876 0.920

FMax
β 0.928 - -

MAE 0.041 - -
Eξ 0.901 - -UHRSD-TE

Sm 0.904 - -

Table 2. Ablation studies of Loss function.

Components of the Loss function HRSOD-TE
Lbce LIoU LAux LAGL FMax

β MAE Eξ Sm

✓ .931 .025 .920 .932
✓ ✓ .940 .023 .944 .936
✓ ✓ ✓ .941 .022 .942 .936
✓ ✓ ✓ ✓ .945 .020 .946 .938

A.4. Model Size and Speed

To demonstrate the advantages of our one-stage method
in terms of model size and inference speed, we show the
comparison among different methods. In Tab. 4, Ours is
architecture consisting of Swin Transformer and Resnet-18
as mentioned in main text. And the Ours-Res50 is the ar-
chitecture replacing Swin Transformer with Resnet-50. As
can be seen, our Ours-Res50 has a much smaller model size
than the DHQSOD [9] which also uses Resnet-50 as en-
coder. Not only that, our methods maintain high inference
speed with high resolution input, far exceeding other high-
resolution methods.



Table 3. Quantitative comparisons with state-of-the-art SOD models on other three low-resolution benchmark datasets in terms of max F-
measure, MAE , E-measure, S-measure. D: trained on DUTS-TR, HD: trained on DUTS-TR and HRSOD-TR, UH: trained on UHRSD-TR
and HRSOD-TR . The best two results are in red and green fonts.

ECSSD PASCAL-S HKU-ISMethod
FMax
β MAE Eξ Sm FMax

β MAE Eξ Sm FMax
β MAE Eξ Sm

CPD [13] .939 .037 .925 .918 .864 .072 .849 .842 .925 .034 .944 .905
SCRN [14] .950 .037 .926 .927 .877 .062 .857 .863 .934 .034 .949 .916
DASNet [17] .950 .032 .927 .927 .876 .061 .861 .857 .941 .026 .955 .919
F3Net [11] .945 .033 .927 .924 .878 .062 .859 .855 .937 .028 .953 .917
GCPA [1] .948 .035 .920 .927 .876 .061 .850 .861 .938 .031 .949 .920
ITSD [19] .947 .034 .927 .925 .876 .064 .853 .856 .934 .031 .952 .917
LDF [12] .950 .034 .925 .924 .881 .060 .865 .856 .939 .027 .954 .919
CTD [18] .950 .032 .925 .925 .878 .061 .861 .856 .941 .027 .955 .927
PFS [7] .952 .031 .928 .930 .875 .063 .856 .854 .943 .026 .956 .924
HRSOD [16] .925 .052 .916 .888 .846 .079 .844 .810 .810 .042 .934 .877
DHQSOD [9] .953 .030 .932 .926 .878 .059 .862 .851 .944 .025 .957 .922

Our PGNet
Ours-D .960 .027 .932 .938 .894 .052 .875 .873 .948 .024 .961 .929
Ours-DH .960 .027 .931 .937 .883 .056 .872 .866 .949 .024 .961 .930
Ours-UH .948 .032 .928 .928 .869 .057 .863 .855 .937 .029 .953 .915

B. UHRSD dataset
B.1. More analysis of UHRSD

In addition to the introduction to UHRSD in the main
text, we analyze some basic attributes of the salient ob-
ject in our UHRSD datasets comparing to widely used SOD
dataset. In Fig. 4, the first figure shows the distance of the
center of salient object from the image center. And the sec-
ond one shows that how far the farthest pixel of salient ob-
jects from the image center. Both of them proved that the
salient objects in our dataset do not suffer from the center
bias. What’s more, the last figure in Fig. 4 illustrates that the
distribution of salient object sizes in our UHRSD is consis-
tent with the widely used SOD dataset.

B.2. Methods trained on UHRSD and HRSOD

In the main text we suggest that the distribution of the
high-resolution dataset differs significantly from the dis-
tribution of the low-resolution dataset, so to better repre-
sent this difference, we trained and tested different meth-
ods using a mixed dataset UHRSD-TR and HRSOD-TR. As
shown in Tab. 5, the performance on low-resolution datasets
trained with UH is all significantly degraded. In contrast,
there is a small decrease or a significant increase in the
three high-resolution datasets. This indicates that a high-
quality high-resolution training set is helpful and necessary
for training high-resolution models.

B.3. Hard Cases from UHRSD

Due to the nature of high-resolution images with rich de-
tails, we have specially selected many challenging scenes to
construct our UHRSD. As shown in Fig. 5, these salient ob-
jects all have very complex holes and edges, which are very

difficult to distinguish in low-resolution scenes. We have
selected these images and annotated them with a fine level
and there are more such examples in our UHRSD dataset.

C. More details of loss function
C.1. IoU loss

The widely-used IoU loss [8] can be formulated as
Eq. (1).

Liou = 1−

H,W∑
i,j

(Gij × Pij)

H,W∑
i,j

(Gij + Pij −Gij × Pij)

(1)

where Gij and Pij represent the value of pixel (i, j) on
Ground-Truth map and Prediction map respectively.

C.2. Detailed ablation study for loss function

The Lbce is the most widely used loss in SOD tasks. We
also adopt LIoU to optimize the global structure like other
existing SOD methods.

Different from methods that apply auxiliary supervision
on each side output, we only apply LAux on the prediction
maps RP and SP . Our purpose is to provide quality fea-
tures for CMGM and to generate more accurate error weight
ωij for our proposed LAGL.

We conduct the ablation study of Ltotal in Tab. 2 , which
shows the effectiveness of our LAGL.



Table 4. Comparisons of model size and FPS with state-of-the-art SOD models. Ours is the architecture consisting of Swin Transformer
and Resnet-18 as used in main paper. The Ours-Res50 is the architecture replacing Swin Transformer with Resnet50.

Ours Ours-Res50 DHQNet HRNet CPD SCRN
Model Size(MB) 278 142 310 130 48 25

FPS 19 38 5 3 62 32
Input Size 1024× 1024 1024× 1024 1024× 1024 1024× 1024 352× 352 352× 352

PFSNet LDF F3Net ITSD CTD GCPA
Model Size(MB) 119 96 98 27 25 67

FPS 36 50 33 43 110 50
Input Size 352× 352 352× 352 352× 352 288× 288 352× 352 320× 320

Table 5. Quantitative comparisons with state-of-the-art SOD models trained on DUTS-TR dataset and UHRSD-TR+HRSOD-TR dataset.
D: trained on DUTS-TR, UH: trained on UHRSD-TR + HRSOD-TR . The improved metrics are in red and decreased in green fonts.

HRSOD-TE DAVIS-S UHRSD-TE DUT-OMRON DUTS-TE
Method

FMax
β MAE Eξ Sm FMax

β MAE Eξ Sm FMax
β MAE Eξ Sm FMax

β MAE Eξ Sm FMax
β MAE Eξ Sm

LDF-D 0.904 0.032 0.919 0.904 0.911 0.019 0.947 0.922 0.913 0.047 0.891 0.888 0.820 0.051 0.873 0.838 0.898 0.034 0.910 0.892

LDF-UH 0.898 0.035 0.908 0.903 0.933 0.016 0.959 0.932 0.924 0.036 0.898 0.913 0.803 0.059 0.858 0.822 0.884 0.040 0.894 0.879

F3Net-D 0.900 0.035 0.913 0.897 0.915 0.020 0.940 0.914 0.909 0.046 0.887 0.890 0.813 0.053 0.871 0.838 0.891 0.035 0.902 0.888

F3Net-UH 0.883 0.041 0.891 0.890 0.893 0.023 0.922 0.907 0.917 0.039 0.896 0.910 0.799 0.065 0.849 0.821 0.871 0.046 0.880 0.871

CTDNet-D 0.905 0.032 0.921 0.905 0.904 0.019 0.938 0.911 0.917 0.043 0.898 0.897 0.826 0.052 0.875 0.844 0.897 0.034 0.909 0.893

CTDNet-UH 0.901 0.031 0.917 0.905 0.905 0.019 0.939 0.917 0.928 0.033 0.902 0.917 0.819 0.054 0.873 0.837 0.888 0.065 0.846 0.846

PFSNet-D 0.911 0.033 0.922 0.906 0.916 0.019 0.946 0.923 0.918 0.043 0.896 0.897 0.823 0.055 0.875 0.842 0.896 0.036 0.902 0.892

PFSNet-UH 0.902 0.036 0.908 0.901 0.946 0.013 0.967 0.942 0.933 0.034 0.904 0.921 0.815 0.061 0.863 0.833 0.886 0.042 0.890 0.881

Our PGNet
Ours-D 0.931 0.021 0.944 0.930 0.936 0.015 0.947 0.935 0.931 0.037 0.904 0.912 0.835 0.045 0.887 0.855 0.917 0.027 0.922 0.911

Ours-UH 0.945 0.020 0.946 0.938 0.957 0.010 0.979 0.954 0.949 0.026 0.916 0.935 0.772 0.058 0.884 0.786 0.871 0.038 0.897 0.859

Figure 1. Comparison of PR curves across three high-resolution datasets. Ours-UH is our method trained on mixed high-resolution dataset
HRSOD-TR+UHRSD-TR.



Image GT Ours DHQSOD HRSOD CPD CTD DASNet F3Net GCPA ITSD LDF 

Figure 2. More visual comparison between our method and SOTA methods from HRSOD-TE datset. Best viewed by zooming in.

Image GT Ours CPD CTD DASNet F3Net GCPA ITSD LDF PFS SCRN 

Figure 3. More visual comparison between our method and SOTA methods from UHRSD-TE dataset. Best viewed by zooming in.

Figure 4. Basic attributes of UHRSD. Best viewed by zoom in.



Image Mask Image+Mask

Figure 5. Examples of hardcase images and corresponding annotations from our UHRSD. It can be clearly seen that our UHRSD has
challenging salient objects with rich details, and meanwhile has a high level of annotation fineness.
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