
TemporalUV: Capturing Loose Clothing with
Temporally Coherent UV Coordinates (Supplementary)

You Xie†, Huiqi Mao‡, Angela Yao‡, Nils Thuerey†

†Department of Informatics, Technical University of Munich
‡Department of Computer Science, National University of Singapore

{you.xie, nils.thuerey}@tum.de, huiqi.mao@u.nus.edu, ayao@comp.nus.edu.sg

In the following, we will first illustrate more details
about UV preprocessing, such as UV extension (section A),
UV optimization (section B), and UV temporal relocation
(section C). Then, additional details about our training will
be given in section D. In section E and section F, we will
further discuss our evaluation and results.

A. UV extension

In this section, we provide further details about UV ex-
tension (section 4.1 of the main paper). Given an image,
we first remove the background to obtain It. Note that the
DensePose model is actually an IUV model, i.e. the UV co-
ordinates P r

t has an additional I channel that encodes the
24 individual parts of the body (see Figure 11b). Subse-
quently, we unwrap the surface in a part-by-part manner
based on the individual parts before applying UV extrap-
olation to P r

t . We assign the labels of the extended parts
manually according to their location, e.g. we label the hair
on the left side with the same I values as the left head part.
An example of our labelling is shown in Figure 11.

After labelling the I values, we linearly extrapolate val-
ues for empty positions with neighbouring points with the
same I value inside a small area with size 3 × 3. Then
we map the new extrapolated point from It to Tt and ap-
ply a virtual mass-spring system in Tt to reduce the sur-
face distortion. We assume that all neighbouring points
O1, O2, ..., On inside a region of size 40×40 are connected
with this new extrapolated point O0 via virtual springs in
the texture. The pushing/pulling forces f1, f2, ..., fn from
neighbour points will drive O0 to the direction of

∑n
i=1 fi

for every step until O0 arrives at an equilibrium state with a
new position, where

∑n
i=1 fn = 0.

From our experience, we found that applying pure push-
ing forces can generate valid results, since the parts that
need to be extended are always located at the outline of the
body. After applying pushing forces, we switch the forces
to pulling in order to make the texture more compact. To
summarize, we extend UV coordinates in the UV space and

a) b) c)

Figure 11. Example of a) It and b) I channel from DensePose
P r
t ; c) after the labelling, the I channel is extended to the full

silhouette.

then continue with a virtual mass-spring system in the tex-
ture map to reduce the unwrapped surface distortion. For
P r
t generated from the SMPL model, which only contains

UV channels, the UV extension step is performed without
labelling the I values, i.e. we directly extend P r

t to the full
silhouette with linear extrapolation before applying the vir-
tual mass-spring system.

B. UV optimization

In section 4.2 of the main paper, we discussed the steps

to obtaining P o
t = argmin

∥∥∥It − I
′

t

∥∥∥2
F

. In this section, we

will illustrate how we calculate ∂Lapp

∂Pt
to optimize Pt with

the objective function

Lapp =
∥∥∥It − I

′

t

∥∥∥2
F
, (14)

1

𝑄௧
௖

RGB
Matching

𝑄௧ 𝑃௧
௢ 𝑄௧

௜௠௚
𝑃௧
௙

𝑄௧
௖

RGB Matching

𝑇௧ 𝑇଴ 𝑄଴

searching
similar patch

fill-in empty
coordinates

𝑄௧

𝐼௧೅బ
ᇱ

warping

𝐴 𝐴𝐵

Figure 12. RGB matching step of UV temporal relocation. Empty positions in Qc
t are filled via patch matching between T0 and Tt.

from which initially we will have

∂Lapp

∂Pt
=

∂Lapp

∂I ′t
× ∂I ′t

∂Pt
. (15)

We compute the gradient ∂I′
t

∂Pt
via the intermediate warp-

ing grids ωT (P
r
t) and ωI(P

r
t) from UV mappings

Tt = W(It, ωT (Pt)) and I ′t = W(Tt, ωI(Pt)). (16)

And relationship between ωI(Pt) and Pt can be written as

ωI(Pt(x)) = x− Pt(x). (17)

This gives:

∂I ′t
∂Pt

=
∂I ′t
∂Tt

× ∂Tt

∂Pt
+

∂I ′t
∂ωI(Pt)

× ∂ωI(Pt)

∂Pt
;

∂Tt

∂Pt
=

∂T

∂ωT (Pt)
× ∂ωT (d(It))

∂Pt
;

∂ωT (Pt)

∂Pt
=

ωT (Pt)

∂ωI(Pt)
× ∂ωI(Pt)

∂Pt
.

(18)
In an implementation, we can conveniently obtain ∂ωT (Pt)

∂Pt

via
∂ωT (Pt)

∂Pt
= W(

∂ωI(Pt)

∂Pt
, ωT (Pt)), (19)

and ∂ωI(Pt)
∂Pt

can be computed via equation 17. This pro-

vides ∂I′
t

∂Pt
for optimization and learning steps.

We apply a gradient descent optimizer with α1 = 100
and α2 = 10 for regularizer Lr. Due to the large distance
between P e

t and P o
t , we use a large learning rate, such as

10.0, to accelerate the optimization procedure. We found
that promising results can be obtained after ca. 16500 steps.
UV optimization takes about 75s/frame, measured for reso-
lution 1200 × 800 with a NVIDIA RTX 2080 Ti GPU. All
frames can be optimized in parallel.

C. UV temporal relocation
In this section, we will introduce how we use RGB

matching in section 4.3 of the main paper to fill in the empty
areas in Qc

t . Specifically, we assume that similar, nearby
texture patches in T0 and Tt will have the same correspon-
dences in Q0 and Qt. For a missing area A in Qc

t , as shown
in Figure 12, we locate the region with the same position as
A in Tt. We record the values of Qc

t and Tt inside region
A with [Qc

t]A and [Tt]A, respectively. Then we can find a
region B in T0 via

min ||[Tt]A − [T0]B ||2F , (20)

and [Q0]B are used to fill in [Qc
t]A to obtain Qt.

Afterwards, Qt can be mapped to Qimg
t in the image

space via P o
t . Qimg

t (u) is directly our P f
t if P r

t is rep-
resented with the same coordinates system as u, such as
the P r

t unwrapped from the SMPL model. But for the P r
t

from the DensePose model, which uses a different coor-
dinate system from u, we additionally transform Qimg

t (u)

PSNR↑ LPIPS↓
×10−2

tOF↓
×104

tLP↓
×10−2

T-diff↓
×105

P r
t 22.1 8.1 1.69 1.0 5.42

V1 23.8 7.0 1.95 1.7 4.33
V2 23.9 6.7 1.76 1.3 4.67
V3 23.6 6.8 1.68 1.2 4.55

Table 2. Quantitative comparisons between P r
t and our different

versions without cropping to fit =P r
t . Our method show significant

improvements for both spatial (PSNR and LPIPS) and temporal
(tOF, T-diff) evaluation metrics. Evaluations with full shape lead
to further improved PSNR and LPIPS evaluations for our results.

into P f
t .

D. Training details

In this section, more details about temporal UV model
training (section 4.4 of the main paper) will be illustrated.
The DensePose model outputs UV coordinates with an extra
I channel to classify different body parts. Below, we use I
subscripts to denote the I channel of a UV coordinate, e.g.,
GI(P

r
t) refers to the I channel of G(P r

t). Then, for P r
t

from the DensePose model, we use an extra cross-entropy
loss

LI = −e[P f
t]I

logGI(P
r
t) (21)

for I channel constraint, where −e[P f
t]I

is a one-hot vec-

tor indicating the [P f
t]

th
I I channel with −e[P f

t]Ij
= 1 if

j = [P f
t]I . We train G for DensePose P r

t with the architec-
ture shown in Figure 13, and all of the discriminators Ds,
Dt, and Dimg follow the same encoder structure, as shown
in Figure 14. For UV data without an I channel, e.g., P r

t

generated from SMPL models, our pipeline is still applica-
ble by training without Li and removing the I channel part
in G.

We apply gradient clipping for the gradients from Limg
s

and Limg
t to stabilize the training of G. Parameters λ2 and

λuv,s start from 200 and 10, respectively. They are de-
creased with rate 0.99 for every 1000 steps. On the other
hand, λimg,s, λsmo, λuv,t, and λimg,t start from 0.001, 0.1,
1, and 1, respectively, but they are gradually increased with
rate 1.01 for every 1000 steps.

E. Evaluation of results

In section 5 of the main paper, we follow [1] to evaluate
temporal coherence of the results and estimate the differ-
ences of warped frames, i.e., T-diff = ∥Igt ,W(Igt , vt)∥1.
In our setting, we use the UV coordinates to calculate vt, so
that T-diff will purely be influenced by Pt. We first warp all
the point coordinates x in Igt to the texture space, then we
can calculate the displacement of all the points from Igt to

Igt+1 :

vtexturet = W(cimg, ωT (P
g
t+1))−W(cimg, ωT (P

g
t))),

(22)
where cimg(x) = x. Then vt can be obtained with:

vt = W(vtexturet , ωI(P
g
t+1)). (23)

0
0.18

0.96

1.28

New Version

Last Version

Reference

௧
௥

ଵ ଷ

b)a)

Bradley-Terry Score

DwNet

ଵ

ଷ

: w/o temporal losses

: w/ temporal losses

Figure 18. User study for the red-black dress case. Our full version
V3 significantly improves over V1 and DwNet.

+

+

reference B
Skirt Style

A
Source Image

C
Result

b)a)

Ours

PSNR

LPIPS
× 10ିଶ

tOF
× 10ସ

tLP
× 10ିଶ

22.39 28.51

8.73 4.6

2.61 1.91

1.13 1.06

Figure 19. a) Results of the Tai-Chi dataset. b) Pose-guided gen-
eration application. Our model is generalized to different poses
from different videos.

In Table 1 of the main paper, we show quantitative com-
parisons between P r

t and our different versions, which are
made fair by cropping to fit =P r

t . These results show im-
provements for both spatial and temporal evaluations. Here,
we also show comparisons of those versions without crop-
ping in Table 2. We can see that our versions outperform
P r
t even further in terms of spatial quality. P r

t performs the
best with tLP, as P r

t cannot generate the extended skirt and
hair parts, which significantly decreases the area for evalu-
ation. Here, we also can see that V3 shows similar spatial
quality as V2 but an improved temporal coherence. Please
refer to the supplementary video to see the improved tem-
poral coherence of the synthesized sequence.

𝑃௧
௥

[𝑃௧
௥]௜

[𝑃௧
௥]௨௩

… …

𝑟𝑒𝑠𝑏𝑙𝑜𝑐𝑘

𝑟𝑒𝑠𝑏𝑙𝑜𝑐𝑘 × 30
(𝑏, ℎ, 𝑤, 27)

(𝑏, ℎ, 𝑤, 25)

(𝑏, ℎ, 𝑤, 2)

(𝑏, ℎ, 𝑤, 128) (𝑏, ℎ, 𝑤, 27)

(𝑏, ℎ, 𝑤, 25)

(𝑏, ℎ, 𝑤, 2)

[𝑃௧
௚]௜

[𝑃௧
௚]௨௩

: 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑎𝑦𝑒𝑟 𝑤𝑖𝑡ℎ 𝑘𝑒𝑟𝑛𝑒𝑙𝑠𝑖𝑧𝑒 = 7 𝑎𝑛𝑑 𝑠𝑡𝑟𝑖𝑑𝑒 = 1 : 𝑙𝑅𝐸𝐿𝑈 𝐴𝐹 𝑤𝑖𝑡ℎ 𝛽 = 0.2 : 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝐴𝐹 : 𝑡𝑎𝑛ℎ 𝐴𝐹

𝑃௧
௚

(𝑏, ℎ, 𝑤, 27)

(𝑏, ℎ, 𝑤, 𝑖𝑛_𝑐)

𝑖𝑛𝑝𝑢𝑡 (𝑏, ℎ, 𝑤, 128)
… …

𝑑𝑖𝑠𝑐𝑏𝑙𝑜𝑐𝑘

𝑑𝑖𝑠𝑐𝑏𝑙𝑜𝑐𝑘 × 4
0/1

: 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑎𝑦𝑒𝑟 𝑤𝑖𝑡ℎ 𝑘𝑒𝑟𝑛𝑒𝑙𝑠𝑖𝑧𝑒 = 4 𝑎𝑛𝑑 𝑠𝑡𝑟𝑖𝑑𝑒 = 1

: 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑎𝑦𝑒𝑟 𝑤𝑖𝑡ℎ 𝑘𝑒𝑟𝑛𝑒𝑙𝑠𝑖𝑧𝑒 = 4 𝑎𝑛𝑑 𝑠𝑡𝑟𝑖𝑑𝑒 = 2

: 𝑅𝐸𝐿𝑈 𝐴𝐹

: 𝐵𝑁 𝐴𝐹

: 𝑑𝑒𝑛𝑠𝑒 𝑙𝑎𝑦𝑒𝑟 𝑤𝑖𝑡ℎ 𝑜𝑢𝑡𝑝𝑢𝑡 1

Figure 13. Generator structure for training with P r
t from the DensePose model. The corresponding part of I channel will be removed when

training with P r
t generated from the SMPL model.

Figure 14. Architecture of the discriminator networks, such as Ds,
Dt, and Dimg . Input channels inc for Ds, Dt, and Dimg are 2, 6,
and 9, respectively.

: from ௧

: from ଴

Figure 15. For parts that do not interact with the clothing, such
as head and feet (in the yellow rectangles), we reuse texture of
Tt to reconstruct those parts in I ′t. For the rest of the parts (blue
rectangle), we use the constant texture To.

We conducted a user study to evaluate coherence (see
Figure 18. Raw DensePose P r

t is the baseline, while models

V1 and V3 are trained with P f
t , without and with temporal

losses, respectively. V3 gives significantly improved eval-
uations from the participants. We also outperform DwNet
with high confidence, confirming the effectiveness of the
temporal losses and the tOF and tLP evaluations.

F. More results

Similar to Figure 6 in the main paper, we show more ex-
amples of P o

t in Figure 16. It becomes visible that our ex-
trapolation and optimization pipeline can significantly im-
prove the spatial quality of UV coordinates and recover the
full silhouette. We also show more virtual try-on applica-
tions in Figure 17, from which we can see that P g

t generated
from our model can be efficiently applied to change clothing
texture. For the virtual try-on application, we replace the
clothing texture from the original constant texture To with
a new texture for an updated constant texture To. Then,
the new sequence is synthesized with the updated To. It is
worth pointing out that since we focus on the clothing, we
reuse the texture of other parts from the source video so that
the evaluation can focus on these regions. As shown in Fig-
ure 15, the head and feet do not interact with the clothing,
so we reuse the texture of those parts from Tt to synthesize
I ′t. Our pipeline can also be applied to datasets contain-
ing more diverse motions and complex backgrounds, such
as the Tai-Chi dataset (see results in Figure 19a). Results
are in line with the conclusions of our main paper: our op-
timization result P o

t successfully recovers the missing UV
coordinates and generates full images I ′t. After training, our
synthesized result (P g

t + To) is closer to the reference than
DensePose (P r

t + To) for temporal and spatial evaluations.
Lastly, our models are specific to garment silhouettes, not
individual videos. Retraining is only necessary if the sil-
houette changes. E.g. in Figure 19b, the model is trained
with the sequence B (with sleeveless dress) and can be con-
ditioned on poses in A (with long sleeves) to generate C.
We aim for this direction since the silhouettes of common

𝐼௧𝑃௧
௥𝐼௧

ᇱ 𝑃௧
௢𝐼௧

ᇱ

𝑎)

𝑏)

𝑐)

Figure 16. Additional results comparing raw UV coordinates P r
t

(the fist column) with UV coordinates P o
t (the fifth column) after

our optimization step. Here we also show I ′t for P r
t (the second

column) and P o
t (the fourth column). We can see that the results

I ′t generated with P o
t are closer to the reference It.

clothes are limited.

References
[1] Dongdong Chen, Jing Liao, Lu Yuan, Nenghai Yu, and Gang

Hua. Coherent online video style transfer. In Proceedings of
the IEEE International Conference on Computer Vision, pages
1105–1114, 2017. 3

New Look synthesized results for various poses

Figure 17. Additional virtual try-on results. Different textures, regardless of complexity, can be applied as a new look to our source video
very efficiently.

