
A. Societal impact
Our method enables a segmentation model trained on a

synthetic dataset more generalizable when deploying in a
real-world dataset with the limited annotation cost. Thus,
our work may have a positive impact on communities to
reduce the cost of annotating the out-of-domain data, which
is economic and environmental friendliness. We carry out
experiments on benchmark datasets and do not notice any
societal issues. It does not involve sensitive attributes.

B. Sensitivity to different hyper-parameters
We conduct detailed experiments about the sensitivity to

different hyper-parameters related to our method. If not
specifically mentioned, all the experiments below are car-
ried out based on DeepLab-v2 with the backbone ResNet-
101 on GTAV → Cityscapes using Ours (RA). When we in-
vestigate the sensitivity to a specific hyperparameter, other
parameters are fixed to the default values, i.e., τ=0.05,
α1=0.1 and α2=1.0 for all experiments.

B.1. Effect of the negative threshold τ

In Table 7, we show the results of Ours (RA) with vary-
ing τ , i.e., τ ∈ {0.01, 0.02, 0.05, 0.08, 0.10, 0.20}. Ours
(RA) achieves consistent results within a suitable insecure
threshold (≤ 0.10), but will have a performance drop with
a large value of τ like 0.20.

B.2. Effect of the consistency regularization loss
weight α1

In Table 8, we show the results of Ours (RA) with vary-
ing α1, i.e., α1 ∈ {0.0, 0.05, 0.1, 0.2, 0.5, 1.0}. Note that
when α1=0.0, the model is trained without any consistency
constraint on source data. As we can see, the best perfor-
mance is achieved at α1=0.1. A smaller or larger value of
α1 will either induce a weaker or stronger constraint.

B.3. Effect of the negative learning loss weight α2

In Table 9, we show the results of Ours (RA) with vary-
ing α2, i.e., α2 ∈ {0.0, 0.1, 0.5, 1.0, 1.5, 2.0}. Note that
when α2=0.0, the model is trained without negative learn-
ing loss on target data. The performance is stable varying
α2, which signifies the equal magnitude between negative
learning loss and supervised learning loss.

C. Comparison with a simple edge detector
In § 4.2, since we set k=1 that is relative small for

RA, the selected regions via Ours (RA) indicate that the
edge pixels are mostly favored for labeling. This makes
sense due to the criterion favoring regions which have high
spatial entropy. Therefore, we further compare our RIPU
with a simple Canny algorithm [3] + prediction uncertainty

Table 7. Effect of the negative threshold τ .

τ 0.01 0.02 0.05 0.08 0.10 0.20

mIoU 68.81 69.54 69.62 69.17 68.94 68.13

Table 8. Effect of the consistency regularization loss weight α1.

α1 0.0 0.05 0.1 0.2 0.5 1.0

mIoU 69.22 69.45 69.62 69.61 69.58 69.39

Table 9. Effect of the negative learning loss weight α2.

α2 0.0 0.1 0.5 1.0 1.5 2.0

mIoU 69.04 69.27 69.44 69.62 69.36 69.16

Table 10. Comparison with edge detector on GTAV → Cityscape.

Method Budget mIoU Budget mIoU

Canny + ENT 40 pixels 56.9 2.2% 68.2
Ours PA, 40 pixels 65.5 RA, 2.2% 69.6
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Figure 7. Visualization of queried pixels to annotate (2.2%)
on GTAV → Cityscapes. (a) Canny: the edges of target images
detected by Canny algorithm; (b) Canny + ENT: a simple Canny
edge detector with uncertainty sampling as a baseline. The sim-
ilarities are that both methods favor the edge pixels to annotate,
the differences are that Canny + ENT may pick out pixels inside
objects, such as windows in a building while the proposed method
is capable of avoiding this issue, demonstrating the benefits of di-
verse region selection with both impurity and uncertainty.

(ENT [52]) to select uncertain pixels from pre-detected
edge and the results are reported in Table 10. The perfor-
mance drops 1.4 mIoU (under 2.2% budget) and 8.6 mIoU
(under 40 pixels budget).

For a better understanding of the section procedure, we
illustrate the selected regions for annotating from the Canny
+ ENT and Our methods. From Fig. 7, we can clearly see
that the edges inside an object will be selected by Canny +
ENT, which is unhelpful. But the region impurity is actually
low (low spatial entropy) and these regions would not be
selected in our method.



Table 11. Experiments on different active selection methods on GTAV → Cityscapes. Best results are shown in bold.
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RAND 40 pixels 94.2 69.9 85.2 44.4 40.6 33.1 41.7 49.2 85.6 51.5 88.3 62.6 37.5 87.6 61.6 62.3 49.9 41.8 59.0 60.3
ENT [52] 40 pixels 93.1 55.9 85.4 35.6 30.6 30.0 28.3 39.0 86.8 45.9 88.5 65.5 32.0 88.0 55.9 54.7 27.7 39.4 62.8 55.0
SCONF [10] 40 pixels 92.1 56.2 86.2 38.4 36.2 37.8 41.4 48.1 87.4 46.8 87.8 67.1 39.1 88.6 57.5 56.6 45.7 47.5 63.0 59.1
Ours (PA) 40 pixels 95.6 69.6 88.0 47.3 45.1 37.8 45.9 56.5 88.2 54.2 89.0 69.7 45.4 90.9 67.0 69.9 54.1 52.4 65.8 64.9

RAND 2.2% 95.3 72.7 86.8 45.3 43.7 38.4 45.2 53.1 87.2 54.3 90.0 65.6 42.5 59.3 67.8 67.1 59.2 45.0 63.2 63.8
ENT [52] 2.2% 94.8 71.1 87.3 52.3 46.1 38.7 47.2 56.3 87.9 55.2 89.3 69.5 47.9 90.5 74.8 71.2 58.6 52.7 66.5 66.2
SCONF [10] 2.2% 94.9 69.9 88.1 52.0 50.0 40.4 49.7 59.4 88.1 55.8 89.7 71.1 49.9 90.7 71.6 69.7 52.5 53.1 67.4 66.5
Ours (RA) 2.2% 96.9 76.2 89.9 55.5 52.4 44.6 54.5 63.8 89.9 57.0 92.1 73.1 52.7 92.3 71.9 72.7 41.0 55.8 70.1 68.5

Figure 8. t-SNE visualization [68] of queried regions from Cityscapes training set on the task GTAV → Cityscapes. Compared to RAND,
ENT, SCONF, Ours (RA) is able to select the most diverse and uncertain regions of an image. Large triangles ▼ denote the selected pixels
and small points • are the remaining pixels in a target image. Please zoom in to see the details.

D. Comparison of different active selection
methods

D.1. Details about comparison methods and perfor-
mance per class

The performance of active learning depends principally
upon depends the selection strategies. In the main pa-
per (Table 4), we compare Ours (RA) and Ours (PA) with
other common selection methods such as Random selec-
tion (RAND), entropy (ENT) [52] and softmax confidence
(SCONF) [10] on GTAV → Cityscapes. All methods do not
use additional loss Ls

cr or Lt
nl.

Rand selection (RAND): pixels and regions are randomly
sampled with equal probability form each target image.

Entropy (ENT) [52]: pixels with the highest prediction en-
tropy, i.e., −

∑C
c=1 P

(i,j,c)
t logP

(i,j,c)
t are sampled for PA.

And regions with the highest average prediction entropy of
all pixels in a region are sampled for RA.

Softmax confidence (SCONF) [10]: query the most unsure

pixels by the softmax confidence score for PA

1− max
c∈{1,··· ,C}

P
(i,j,c)
t ,

where larger value indicates less confident. And for RA,
select regions with the largest average score of all pixels in
a region.

In Table 11, we extend the results of Table 4 by adding
the per class IoU for each method. Indeed, our methods se-
lect more regions or pixels belonging to the majority classes
than baseline methods. Note that Ours (RA) works specially
well for rare object categories, such as “fence”, “pole”,
“sign” or “rider”, among others, which is a side effect of
directly optimizing for per class IoU and mean IoU.

D.2. t-SNE visualization

In Fig. 8, we illustrate the sampling behavior of Ours
(RA) with different selection strategies via t-SNE visualiza-
tion [68]. We visualize the feature representations of pixels
sampled via RAND, ENT, SCONF and Ours (RA) (large,



Table 12. Quantitative evaluation on GTAV → Cityscapes. Results are based on DeepLab-v2 with ResNet-101 architecture. SF indicates
whether the method supports source-free adaptation. Best results are shown in bold.
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URMA [59] ! - 92.3 55.2 81.6 30.8 18.8 37.1 17.7 12.1 84.2 35.9 83.8 57.7 24.1 81.7 27.5 44.3 6.9 24.1 40.4 45.1
LD [82] ! - 91.6 53.2 80.6 36.6 14.2 26.4 31.6 22.7 83.1 42.1 79.3 57.3 26.6 82.1 41.0 50.1 0.3 25.9 19.5 45.5
SFDA (w/ cPAE) [27] ! - 91.7 53.4 86.1 37.6 32.1 37.4 38.2 35.6 86.7 48.5 89.9 62.6 34.3 87.2 51.0 50.8 4.2 42.7 53.9 53.4
Ours (RA) ! 2.2% 95.9 76.2 88.4 45.4 47.8 42.1 53.0 62.8 88.6 56.6 91.4 72.1 52.2 91.2 59.5 74.2 55.0 54.4 68.3 67.1

Ours (RA) % 2.2% 96.5 74.1 89.7 53.1 51.0 43.8 53.4 62.2 90.0 57.6 92.6 73.0 53.0 92.8 73.8 78.5 62.0 55.6 70.0 69.6

Table 13. Quantitative evaluation on SYNTHIA → Cityscapes. Results are based on DeepLab-v2 with ResNet-101 architecture. We
report the mIoUs in terms of 13 classes (excluding the “wall”, “fence”, and “pole”) and 16 classes. Best results are shown in bold.
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URMA [59] ! - 59.3 24.6 77.0 14.0 1.8 31.5 18.3 32.0 83.1 80.4 46.3 17.8 76.7 17.0 18.5 34.6 39.6 45.0
LD [82] ! - 77.1 33.4 79.4 5.8 0.5 23.7 5.2 13.0 81.8 78.3 56.1 21.6 80.3 49.6 28.0 48.1 42.6 50.1
SFDA (w/ cPAE) [27] ! - 90.5 50.0 81.6 13.3 2.8 34.7 25.7 33.1 83.8 89.2 66.0 34.9 85.3 53.4 46.1 46.6 52.0 60.1
Ours (RA) ! 2.2% 96.6 75.9 89.0 49.2 46.6 40.2 48.4 60.7 89.8 91.7 70.0 48.8 92.3 81.1 51.0 67.8 68.7 74.1

Ours (RA) % 2.2% 96.8 76.6 89.6 45.0 47.7 45.0 53.0 62.5 90.6 92.7 73.0 52.9 93.1 80.5 52.4 70.1 70.1 75.7

triangles, ▼) along with the remaining pixels (small, points,
•) in a target image. We clearly observe that the RAND
baseline performs average sampling regions in Fig. 8(a),
which can waste the annotation budget on labeling redun-
dant areas within objects, such as “road” and “building”.
Fig. 8(b) and Fig. 8(c) show that ENT and SCONF chose
most uncertain regions, but seldom chose the infrequent ob-
ject categories such as “sign”, “fence” and “pole” which can
be selected via Ours (RA) in Fig. 8(d). Across all strategies,
we find that our method samples regions that are diverse (of-
ten present in a region with much more object categories)
and uncertain (often present in a cluster of unpredictable
object boundaries).

In short, Ours (RA) is the best option among various
possible selection strategies regarding both the performance
gain (Table 11) and visual presentation (Fig. 8).

E. Extension of RIPU to source-free scenario

Active domain adaptation, which achieves enormous
performance gains at the expense of annotating a few target
samples, has attracted a surge of interest due to its utility.
Considering the data sensitivity and security issues, we fur-
ther evaluate the generalization of our RIPU to a challeng-
ing scenario called source-free domain adaptation (SFDA),
where only a source domain pre-trained model and unla-
beled target data are accessible to conduct adaptation [27].
In SFDA extension, we start from a source domain pre-
trained model, then we optimize the model with Lt

CE of
active samples and Lt

nl of target data, without utilizing the
source domain. We adopt the DeepLab-v2 [5] with the
backbone ResNet-101 and carry out experiment on both
two popular domain adaptation benchmarks, i.e., GTAV →
Cityscapes and SYNTHIA → Cityscapes, with the anno-

tation budget of 2.2% regions per image. With respect to
training procedure, we keep in line with details of the main
paper, such as learning rate schedule, batch size, maximum
iteration, and input size etc.

As shown in Table 12 and Table 13, with little work-
load to manually annotate active regions in a target image,
Ours (RA) achieves significant improvements compared to
existing SFDA approaches [27,59,82], in detail, 13.7∼22.0
mIoU on GTAV → Cityscapes and 16.7∼29.1 mIoU on
SYNTHIA → Cityscapes. These results suggest that our
method better facilitates the performance on SFDA. In ad-
dition, we can observe a slight performance degradation
without source data participating during the training pro-
cess. In a nutshell, RIPU can be well generalized to SFDA
and shows great potential for further exploration of perfor-
mance increases.

F. Additional qualitative results
We follow the same conventions as Fig. 3 and Fig. 4 of

the main paper, and present additional results for qualita-
tive comparisons under various settings, including GTAV →
Cityscapes (Fig. 9 and Fig. 11), SYNTHIA → Cityscapes
(Fig. 10 and Fig. 12).



(a) Target Image (b) Ground Truth (c) Source Only (d) Ours (RA) (e) Ours (PA)

Figure 9. Visualization of segmentation results on GTAV → Cityscapes. From left to right: original target image, ground-truth label,
result predicted by Source Only model, result predicted by Ours (RA), and result predicted by Ours (PA) are shown one by one.



(a) Target Image (b) Ground Truth (c) Source Only (d) Ours (RA) (e) Ours (PA)

Figure 10. Visualization of segmentation results on SYNTHIA → Cityscapes. From left to right: original target image, ground-truth
label, result predicted by Source Only model, result predicted by Ours (RA), and result predicted by Ours (PA) are shown one by one.



(a) Ground Truth (c) Uncertainty Only (d) Impurity Only (e) Ours (RA)(b) RAND

Figure 11. Visualization of queried regions to annotate (2.2%) on GTAV → Cityscapes. Compared to RAND, Uncertainty Only, and
Impurity Only, Ours (RA) is able to select the most diverse and uncertain regions of an image. Please zoom in to see the details.



(a) Ground Truth (c) Uncertainty Only (d) Impurity Only (e) Ours (RA)(b) RAND

Figure 12. Visualization of queried regions to annotate (2.2%) on SYNTHIA → Cityscapes. Compared to RAND, Uncertainty Only,
and Impurity Only, Ours (RA) is able to select the most diverse and uncertain regions of an image. Please zoom in to see the details.


