A. Societal impact

Our method enables a segmentation model trained on a
synthetic dataset more generalizable when deploying in a
real-world dataset with the limited annotation cost. Thus,
our work may have a positive impact on communities to
reduce the cost of annotating the out-of-domain data, which
is economic and environmental friendliness. We carry out
experiments on benchmark datasets and do not notice any
societal issues. It does not involve sensitive attributes.

B. Sensitivity to different hyper-parameters

We conduct detailed experiments about the sensitivity to
different hyper-parameters related to our method. If not
specifically mentioned, all the experiments below are car-
ried out based on DeepLab-v2 with the backbone ResNet-
101 on GTAV — Cityscapes using Ours (RA). When we in-
vestigate the sensitivity to a specific hyperparameter, other
parameters are fixed to the default values, i.e., 7=0.05,
a1=0.1 and a»=1.0 for all experiments.

B.1. Effect of the negative threshold

In Table 7, we show the results of Ours (RA) with vary-
ing 7, i.e,, 7 € {0.01,0.02,0.05,0.08,0.10,0.20}. Ours
(RA) achieves consistent results within a suitable insecure
threshold (< 0.10), but will have a performance drop with
a large value of 7 like 0.20.

B.2. Effect of the consistency regularization loss
weight o

In Table 8, we show the results of Ours (RA) with vary-
ing a1, ie., a; € {0.0,0.05,0.1,0.2,0.5,1.0}. Note that
when «1=0.0, the model is trained without any consistency
constraint on source data. As we can see, the best perfor-
mance is achieved at «1=0.1. A smaller or larger value of
a1 will either induce a weaker or stronger constraint.

B.3. Effect of the negative learning loss weight o,

In Table 9, we show the results of Ours (RA) with vary-
ing ag, ie., ay € {0.0,0.1,0.5,1.0,1.5,2.0}. Note that
when aix=0.0, the model is trained without negative learn-
ing loss on target data. The performance is stable varying
ag, which signifies the equal magnitude between negative
learning loss and supervised learning loss.

C. Comparison with a simple edge detector

In § 4.2, since we set k=1 that is relative small for
RA, the selected regions via Ours (RA) indicate that the
edge pixels are mostly favored for labeling. This makes
sense due to the criterion favoring regions which have high
spatial entropy. Therefore, we further compare our RIPU
with a simple Canny algorithm [3] + prediction uncertainty

Table 7. Effect of the negative threshold 7.

T 0.01 002 0.05 0.08 010 0.20
mloU 68.81 69.54 69.62 69.17 6894 68.13

Table 8. Effect of the consistency regularization loss weight o .

o 0.0 0.05 0.1 0.2 0.5 1.0
mloU 69.22 6945 69.62 69.61 69.58 69.39

Table 9. Effect of the negative learning loss weight ca.

g 0.0 0.1 0.5 1.0 1.5 2.0
mloU  69.04 69.27 69.44 69.62 69.36 69.16

Table 10. Comparison with edge detector on GTAV — Cityscape.

Method Budget mloU ‘ Budget  mloU

Canny + ENT 40 pixels 56.9 2.2% 68.2
Ours PA, 40 pixels 65.5 | RA,22%  69.6
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Figure 7. Visualization of queried pixels to annotate (2.2%)
on GTAV — Cityscapes. (a) Canny: the edges of target images
detected by Canny algorithm; (b) Canny + ENT: a simple Canny
edge detector with uncertainty sampling as a baseline. The sim-
ilarities are that both methods favor the edge pixels to annotate,
the differences are that Canny + ENT may pick out pixels inside
objects, such as windows in a building while the proposed method
is capable of avoiding this issue, demonstrating the benefits of di-
verse region selection with both impurity and uncertainty.

(ENT [52]) to select uncertain pixels from pre-detected
edge and the results are reported in Table 10. The perfor-
mance drops 1.4 mIoU (under 2.2% budget) and 8.6 mloU
(under 40 pixels budget).

For a better understanding of the section procedure, we
illustrate the selected regions for annotating from the Canny
+ ENT and Our methods. From Fig. 7, we can clearly see
that the edges inside an object will be selected by Canny +
ENT, which is unhelpful. But the region impurity is actually
low (low spatial entropy) and these regions would not be
selected in our method.



Table 11. Experiments on different active selection methods on GTAV — Cityscapes

. Best results are shown in bold.

5
P v oy 5 & ¢ 0§ s ; & & & F - 5 8 ©
Method Budget S §F § £ & § &£ ¥ ARG g F & §&§ & § & F|mou
RAND 40 pixels | 942 69.9 852 444 40.6 33.1 417 492 856 515 883 626 375 876 61.6 623 499 418 59.0| 603
ENT [52] 40 pixels | 93.1 559 854 356 30.6 30.0 283 390 868 459 885 655 320 880 559 547 277 394 628 | 550
SCONF [10] | 40 pixels | 92.1 562 862 384 362 37.8 414 48.1 874 468 878 671 39.1 886 575 566 457 475 630 | 59.1
Ours (PA) 40 pixels | 95.6 69.6 88.0 473 451 378 459 565 882 542 89.0 69.7 454 909 67.0 699 541 524 658 | 649
RAND 2.2% 953 727 86.8 453 437 384 452 531 872 543 900 656 425 593 678 671 592 450 632 | 63.8
ENT [52] 2.2% 948 71.1 873 523 461 387 472 563 879 552 893 695 479 905 748 712 586 527 665 | 66.2
SCONF [10] 2.2% 949 699 881 520 500 404 49.7 594 881 558 89.7 7.1 499 90.7 716 69.7 525 531 674 | 66.5
Ours (RA) 2.2% 969 762 899 555 524 446 545 638 899 570 921 731 527 923 719 727 410 558 70.1 | 68.5
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Figure 8. t-SNE visualization [68] of queried regions from Cityscapes training set on the task GTAV — Cityscapes. Compared to RAND,
ENT, SCONF, Ours (RA) is able to select the most diverse and uncertain regions of an image. Large triangles ¥ denote the selected pixels
and small points e are the remaining pixels in a target image. Please zoom in to see the details.

D. Comparison of different active selection
methods

D.1. Details about comparison methods and perfor-
mance per class

The performance of active learning depends principally
upon depends the selection strategies. In the main pa-
per (Table 4), we compare Ours (RA) and Ours (PA) with
other common selection methods such as Random selec-
tion (RAND), entropy (ENT) [52] and softmax confidence
(SCONF) [10] on GTAV — Cityscapes. All methods do not
use additional loss £, or L.

Rand selection (RAND): pixels and regions are randomly
sampled with equal probability form each target image.
Entropy (ENT) [52]: pixels with the highest prediction en-
tropy, i.e., — 3.5, P! 1og P{") are sampled for PA.
And regions with the highest average prediction entropy of
all pixels in a region are sampled for RA.

Softmax confidence (SCONF) [10]: query the most unsure

pixels by the softmax confidence score for PA

1— max P

ce{l,,C}
where larger value indicates less confident. And for RA,
select regions with the largest average score of all pixels in
a region.

In Table 11, we extend the results of Table 4 by adding
the per class IoU for each method. Indeed, our methods se-
lect more regions or pixels belonging to the majority classes
than baseline methods. Note that Ours (RA) works specially
well for rare object categories, such as “fence”, “pole”,
“sign” or “rider”, among others, which is a side effect of
directly optimizing for per class IoU and mean IoU.

D.2. t-SNE visualization

In Fig. 8, we illustrate the sampling behavior of Ours
(RA) with different selection strategies via t-SNE visualiza-
tion [68]. We visualize the feature representations of pixels
sampled via RAND, ENT, SCONF and Ours (RA) (large,



Table 12. Quantitative evaluation on GTAV — Cityscapes. Results are based on DeepLab-v2 with ResNet-101 architecture. SF indicates
whether the method supports source-free adaptation. Best results are shown in bold.
il & N S é? NS & $ $6 & A s & S & $ s c@& &
Method SF | Budget | € Y N EU) § ¥ 5 °L & ¥ & $ F & g & ¢ <& | mloU
URMA [59] v 923 552 81.6 308 188 371 177 121 842 359 838 577 241 817 275 443 69 241 404 | 451
LD [82] v 91.6 532 80.6 366 142 264 316 227 831 421 793 573 266 821 410 501 03 259 19.5 | 455
SFDA (w/ cPAE) [27] | v/ - | 917 534 861 376 321 374 382 356 867 485 899 626 343 872 510 508 42 427 539 | 534
Ours (RA) V| 22% | 959 762 884 454 478 421 530 628 886 566 914 721 522 912 595 742 550 544 683 67.1
Ours (RA) X | 22% | 965 741 897 531 510 438 534 622 90.0 57.6 926 73.0 530 928 738 785 620 556 70.0 69.6

Table 13. Quantitative evaluation on SYNTHIA — Cityscapes.

Results are based on DeepLab-v2 with ResNet-101 architecture. We
report the mloUs in terms of 13 classes (excluding the “wall”, “fence”, and “pole”) and 16 classes. Best results are shown in bold.

% F &
> v N S g ¢ N s o« & ¢ e SIS
Method SF|Buget | € F & £ & § & F & £ ¢ F F & & F | moU movt
URMA [59] v 593 246 770 140 18 315 183 320 831 804 463 178 767 170 185 346 | 396 450
LD [82] v 771 334 794 58 05 237 52 130 818 783 561 216 803 496 280 48.1 | 426 501
SFDA (w/cPAE)[27] | v/ | - | 905 500 816 133 28 347 257 331 838 892 660 349 853 534 461 466 | 520  60.1
Ours (RA) V| 22% | 966 759 89.0 492 466 402 484 607 898 917 700 488 923 811 510 67.8 | 687 74l
Ours (RA) | X| 22% | 968 766 8.6 450 477 450 530 625 90.6 927 730 529 931 805 524 701 | 701 757

triangles, ¥) along with the remaining pixels (small, points,
e) in a target image. We clearly observe that the RAND
baseline performs average sampling regions in Fig. 8(a),
which can waste the annotation budget on labeling redun-
dant areas within objects, such as “road” and “building”.
Fig. 8(b) and Fig. 8(c) show that ENT and SCONF chose
most uncertain regions, but seldom chose the infrequent ob-
ject categories such as “sign”, “fence” and “pole” which can
be selected via Ours (RA) in Fig. 8(d). Across all strategies,
we find that our method samples regions that are diverse (of-
ten present in a region with much more object categories)
and uncertain (often present in a cluster of unpredictable
object boundaries).

In short, Ours (RA) is the best option among various
possible selection strategies regarding both the performance
gain (Table 11) and visual presentation (Fig. 8).

E. Extension of RIPU to source-free scenario

Active domain adaptation, which achieves enormous
performance gains at the expense of annotating a few target
samples, has attracted a surge of interest due to its utility.
Considering the data sensitivity and security issues, we fur-
ther evaluate the generalization of our RIPU to a challeng-
ing scenario called source-free domain adaptation (SFDA),
where only a source domain pre-trained model and unla-
beled target data are accessible to conduct adaptation [27].
In SFDA extension, we start from a source domain pre-
trained model, then we optimize the model with £} 5 of
active samples and £, of target data, without utilizing the
source domain. We adopt the DeepLab-v2 [5] with the
backbone ResNet-101 and carry out experiment on both
two popular domain adaptation benchmarks, i.e., GTAV —
Cityscapes and SYNTHIA — Cityscapes, with the anno-

tation budget of 2.2% regions per image. With respect to
training procedure, we keep in line with details of the main
paper, such as learning rate schedule, batch size, maximum
iteration, and input size etc.

As shown in Table 12 and Table 13, with little work-
load to manually annotate active regions in a target image,
Ours (RA) achieves significant improvements compared to
existing SFDA approaches [27,59,82], in detail, 13.7~22.0
mloU on GTAV — Cityscapes and 16.7~29.1 mloU on
SYNTHIA — Cityscapes. These results suggest that our
method better facilitates the performance on SFDA. In ad-
dition, we can observe a slight performance degradation
without source data participating during the training pro-
cess. In a nutshell, RIPU can be well generalized to SFDA
and shows great potential for further exploration of perfor-
mance increases.

F. Additional qualitative results

We follow the same conventions as Fig. 3 and Fig. 4 of
the main paper, and present additional results for qualita-
tive comparisons under various settings, including GTAV —
Cityscapes (Fig. 9 and Fig. 11), SYNTHIA — Cityscapes
(Fig. 10 and Fig. 12).



(a) Target Image (b) Ground Truth (c) Source Only (d) Ours (RA) (e) Ours (PA)

Figure 9. Visualization of segmentation results on GTAV — Cityscapes. From left to right: original target image, ground-truth label,
result predicted by Source Only model, result predicted by Ours (RA), and result predicted by Ours (PA) are shown one by one.




(a) Target Image (b) Ground Truth (c) Source Only (d) Ours (RA) (e) Ours (PA)

Figure 10. Visualization of segmentation results on SYNTHIA — Cityscapes. From left to right: original target image, ground-truth
label, result predicted by Source Only model, result predicted by Ours (RA), and result predicted by Ours (PA) are shown one by one.
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(a) Ground Truth (b) RAND (c) Uncertainty Only (d) Impurity Only (e) Ours (RA)

Figure 11. Visualization of queried regions to annotate (2.2%) on GTAV — Cityscapes. Compared to RAND, Uncertainty Only, and
Impurity Only, Ours (RA) is able to select the most diverse and uncertain regions of an image. Please zoom in to see the details.
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Figure 12. Visualization of queried regions to annotate (2.2%) on SYNTHIA — Cityscapes. Compared to RAND, Uncertainty Only,
and Impurity Only, Ours (RA) is able to select the most diverse and uncertain regions of an image. Please zoom in to see the details.



