
APES: Articulated Part Extraction from Sprite Sheets
–Supplementary Material–

Zhan Xu1,2 Matthew Fisher2 Yang Zhou2 Deepali Aneja2 Rushikesh Dudhat1 Li Yi3 Evangelos Kalogerakis1
1University of Massachusetts Amherst 2Adobe Research 3Tsinghua University

1. Applications

In our supplementary video https://youtu.be/
YQtbRXFKNZE, we show two applications based on ex-
tracted articulated parts from APES: part-based animation
and puppet creation via part swapping. We refer readers to
the video for a demonstration of these applications.

For part-based animation, we create a set of control
points or joints based on the extracted parts. We follow a
simple heuristic to obtain them. First, we compute the cen-
troid point of the whole character, and designate the part
closest to the centroid as the “central” part (this coincides
with the torso in Fig. 1). We create a joint at the center
of this central part. The rest of the parts are designated
as “limbs”. We create joints (“pin joints”) at the center of
the intersection between the limbs and the central part (e.g.,
hips, shoulders in Fig. 1). Finally, we extract the medial
axis of each limb, and create a joint at the medial axis point
furthest to the pin joint for each limb (these points corre-
spond to fingers and toes in Fig. 1). The resulting joints
form a simple control structure (e.g., an animation skeleton)
that can be loaded into standard animation software. We
use the Adobe’s Character Animator in the supplementary
video. By manipulating the joint positions and angles, users
can animate the characters based on the joints and parts ex-
tracted by APES.

Figure 1. Control points (red dots) and skeletons created based on
the extracted parts from APES.

2. Non-rigid Deformation for Reconstruction

As explained in Section 3.3, our part selection procedure
uses a random rounding algorithm to solve the integer lin-
ear programming problem. The random rounding algorithm
gives us multiple possible solutions. We pick the best solu-
tion in terms of reconstruction error after deforming each
candidate set of parts to reconstruct the input poses. We
describe here the deformation procedure.

Let Q = {qc}Cc=1 be a set of selected parts (where C
is their total number), and the image It be the target pose
to be reconstructed. A straight-forward method for recon-
struction is fitting the optimal translation and rotation trans-
formation for each part based on the predicted correspon-
dences using the Procrustes orthogonal analysis used in ICP
methods [1]. Such method is computationally efficient, but
is sensitive to the noise in the predicted correspondences,
and cannot capture non-rigid deformations that may exist in
the input poses. Instead, we follow an as-rigid-as-possible
deformation procedure (ARAP [4]). The ARAP takes as in-
put a control mesh, and target positions for one or more of
its vertices. To create a control mesh for each part qc ∈ Q,
we first uniformly sample a set of vertices Vc from its ori-
ented bounding box. Then we create the Delaunay triangu-
lation of the vertices. Each control mesh also incorporates
the texture from the original appearance of its associated
part. We treat the target positions {V ′

c}Cc=1 of the mesh ver-
tices as unknowns in an optimization problem that attempts
to deform the control meshes of all parts such that their re-
sulting appearance is as close as possible to the target pose
It, while at the same time the part deformations are as-rigid-
as-possible. Specifically, we solve the following problem:

L(V ′
c) = ∥

C∑
c=1

Φ(V ′
c)− It∥22 + λr

C∑
c=1

R(Vc,V ′
c) (1)

where λr is set to 0.05 in our experiments. The first term
measures the reconstruction error between the deformed
parts (caused by the shifted vertices) and the target pose. Φ
renders each part with the shifted control vertices V′

c based
on barycentric coordinates and bilinear interpolation [3],

1



which is differentiable. The second term is a regulariza-
tion term that preserves the local shape during deformation.
Specifically, it penalizes deviation from local rigid defor-
mation for each control vertex neighborhood [4]:

R(Vc,V ′
c) =

∑
vi∈Vc

∑
vj∈N (vi)

∥(v′
j − v′

i)−Ri(vj − vi)∥2

(2)
where N (vi) is the neighborhood of the control vertex vi

and Ri is the best fit rotation of its neighborhood to the de-
formed configuration. The best fit rotations are computed
via orthogonal Procrustes analysis. The optimization prob-
lem is solved iteratively. At each iteration, we alternative
between solving for the deformed control vertices, and op-
timal rotations, as proposed in [4]. Fig.2 shows an example
of our reconstruction approach.

(a) target pose (b) selected part (c) linear trans. (d) ARAP-based

Figure 2. Example of reconstruction via non-rigid deformation.
By using the best-fit rigid transformation, the deformation (c) of
the left arm cannot reconstruct well the target pose (a). Using the
ARAP-based reconstruction (d), the arm is aligned better to the
target appearance.

Non-rigid deformation for augmentation. As discussed
in Section 5.1, we apply small, non-rigid deformations on
each training body part to improve the pose diversity during
training for the OkaySamurai dataset. To do so, for each
part we uniformly sample control vertices in its oriented
bounding box, and randomly shift the points by offsets sam-
pled from Gaussian distribution N (0, σ2) where σ is set as
2% of the maximum image dimension. We form the control
meshes for parts, and deform them to reach the shifted con-
trol vertices using an ARAP deformation similar to Eq. 1.;
here the reconstruction error measures difference between
deformed and original control vertex positions.

3. Architecture Details
We provide here additional details of our network archi-

tecture.

Correspondence Module. Table 1 lists the layers used in
the correspondence module along with the size of their out-
put map. We call the architecture of our module as “Gated
UNet” since the convolutional layers in the encoder imple-
ment Gated Convolution [6].

Table 1. Correspondence module architecture (Gated UNet).
Conv3x3 is convolutional layer with kernel size 3. LN is
LeakyReLU with negative slope as 0.2. BN is BatchNorm. Dot
between LR and Sigmoid is element-wise product. Upsample uses
bilinear interpolation for upsampling. We note that there are skip
connections between corresponding layers from encoder and de-
coder, following the original U-Net architecture.

Layers Output

Input Concat(image, mask) 256×256×4

Encoder

BN(LR(Conv3x3)·Sigmoid(Conv3x3))256×256×32
BN(LR(Conv3x3)·Sigmoid(Conv3x3))256×256×32

MaxPooling(2) 128×128×32
BN(LR(Conv3x3)·Sigmoid(Conv3x3))128×128×64
BN(LR(Conv3x3)·Sigmoid(Conv3x3))128×128×64

MaxPooling(2) 64×64×64
BN(LR(Conv3x3)·Sigmoid(Conv3x3)) 64×64×128
BN(LR(Conv3x3)·Sigmoid(Conv3x3)) 64×64×128

MaxPooling(2) 32×32×128
BN(LR(Conv3x3)·Sigmoid(Conv3x3)) 32×32×256
BN(LR(Conv3x3)·Sigmoid(Conv3x3)) 32×32×256

MaxPooling(2) 16×16×256
BN(LR(Conv3x3)·Sigmoid(Conv3x3)) 16×16×256
BN(LR(Conv3x3)·Sigmoid(Conv3x3)) 16×16×256

Decoder

Upsample(2) 32×32×256
BN(ReLU(Conv3x3)) 32×32×128
BN(ReLU(Conv3x3)) 32×32×128

Upsample(2) 64×64×128
BN(ReLU(Conv3x3)) 64×64×64
BN(ReLU(Conv3x3)) 64×64×64

Upsample(2) 128×128×64
BN(ReLU(Conv3x3)) 128×128×32
BN(ReLU(Conv3x3)) 128×128×32

Upsample(2) 256×256×32
BN(ReLU(Conv3x3)) 256×256×32
BN(ReLU(Conv3x3)) 256×256×32
BN(ReLU(Conv3x3)) 256×256×64

Table 2. Clustering module architecture. The symbol “pred.R”
means predicted rotations, and “pred.T” means predicted transla-
tions. To update the voting map, we apply the predicted rotations
to source pixels.

Layers Output

Input Concat(voting map, mask) 256×256×5

Gated UNet
similar to Table 1 with

intermediate channel numbers
as 16, 32, 64, 128, 256

256×256×16

Average pooling
per superpixel N/A Ks×16

MLP 16→64→2 pred.R: Ks×2

Updated input Concat(updated voting map, mask) 256×256×5

Gated UNet
similar to Table 1 with

intermediate channel numbers
as 16, 32, 64, 128, 256

256×256×16

Average pooling
per superpixel N/A Ks×16

MLP 16→64→2 pred.T: Ks×2

Clustering Module. Table 2 shows the architecture of the
clustering module.



4. Implementation Details

The correspondence module is first trained alone. We
set the learning rate to 10−3 and decrease it to 10−4 after
5 epochs. Then we train both the correspondence and clus-
tering modules using the soft nearest neighbor in Equation
5 of the main text. We set the learning rate to 10−6 for
the correspondence module and 10−4 for the segmentation
module with a batch size of 8 for this stage. We use the
Adam optimizer. The height H and width W of the images
and voting maps are always 256. The number of clusters Cs

during training is set to 12.

5. Correspondence Comparison

Fig. 3 shows a qualitative comparison example of pre-
dicted correspondences between our method, RAFT [5] and
COTR [2]. To help RAFT and COTR better use the fore-
ground masks, we map the predicted target positions to
their nearest neighbors in the foreground. RAFT and COTR
cannot produce correspondences reliably e.g., for hand and
head regions, as shown below.

(a) (b) (c) (d) (e) (f) (g)

Figure 3. Visualization of the predicted correspondences from our
method, RAFT and COTR. From left to right: (a) source image
(b) target image (c) color-coded source pixels (d) ground-truth tar-
get pixels (e) prediction of our method (f) prediction of RAFT (g)
prediction of COTR. Corresponding pixels have same color in the
visualization of correspondence maps. Our method matches pixels
more accurately compared to other methods.

6. More Qualitative Results

We show here additional qualitative results from the The
CreativeFlow+ dataset. We note that this dataset does not
include segmentations of articulated parts. Their provided
segmentation maps are based on mesh components, which
often do not match articulation. Thus, as an additional test
set, we manually segmented 12 characters into rigid parts
from their test split, and used them as reference to measure
the performance of our trained model on them. We achieve
an IoU of 67%, which is slightly lower than the IoU we
achieved for the OkaySamurai dataset (71%). Two exam-
ples are shown in Fig. 4.

We include the results for the test sprite sheets in
OkaySamurai dataset and SPRITE in our code repository.

Figure 4. Part extraction results in the CreativeFlow+ dataset.

References
[1] P.J. Besl and Neil D. McKay. A method for registration of 3-d

shapes. IEEE TPAMI, 14(2), 1992. 1
[2] Wei Jiang, Eduard Trulls, Jan Hosang, Andrea Tagliasacchi,

and Kwang Moo Yi. Cotr: Correspondence transformer for
matching across images. In ICCV, 2021. 3

[3] Erika Lu, Forrester Cole, Tali Dekel, Weidi Xie, Andrew Zis-
serman, David Salesin, William T Freeman, and Michael Ru-
binstein. Layered neural rendering for retiming people in
video. In SIGGRAPH Asia, 2020. 1

[4] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface
modeling. In SGP, volume 4, 2007. 1, 2

[5] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In ECCV, 2020. 3

[6] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S Huang. Free-form image inpainting with gated con-
volution. In ICCV, 2019. 2


