
Accelerating Video Object Segmentation with Compressed Video

Kai Xu Angela Yao
National University of Singapore
{kxu, ayao}@comp.nus.edu.sg

Contents

Algorithm Details 1

Additional Implementation Details 1

Soft Motion-Vector Propagation Module 1

Residual Correction Module 2

Timing Analysis 2

Impact of Object Size 3

Qualitative Comparison 3

Licence 4

Algorithm Details
Given a compressed video sequence of length T , let

{i, i ∈ [1, T]} be the natural presentation index of the frames
in time. Additionally, we denote with Γ = {Γi, i ∈ [1, T]}
the decoding order, where Γi is the decoding index for frame
i. Recall that {(Ii,Mi, ei), i, i ∈ [1, T]} is the reconstructed
image sequence, where Ii is the reconstructed RGB image
of frame i and {(Mi, ei)} are the associated motion fields
and residuals. I, P , B are sets of I-, P- and B-frame indices,
respectively. WMV (·) is the motion vector warping opera-
tion defined in Eq. 6 and Eq. 7 of the main paper. The overall
pipeline can be summarized in Algorithm 1.

Additional Implementation Details
Low-level feature encoder F : With MiVOS [1] as the

base model, we use the layers before the second residual
stage of their RGB encoder (ResNet 50) as the low-level
feature encoder. The encoder outputs features of 1/4 spatial
size and 256 channels.

Training: All training data is generated with MiVOS
as the base model. We generate and store the warped fea-
tures, warped predictions, and residuals in advance using
the weights for the model released by the authors. We use
a pixel-wise cross entropy loss for training. The training

Algorithm 1 Compressed video object segmentation.

1: Model: Base Model {F,G}, Decoder Model D.
2: Input: Decoding order {Γt, t ∈ [1, T]}; Reconstructed RGB
{(Ii), i ∈ [1, T]}; Motion fields and residuals {(Mi, ei), i ∈
[1, T]}; Residual binarization threshold τ ; I, P , B are sets of
indices for I-, P- and B-frames respectively. ψ denotes softmax
aggregation which is used in RGMP [3]. 1[·] is indicator
function.

3: for i = Γ1, ...,ΓT do
4: if i ∈ I or P then
5: Get key frame’s softmax prediction from base model:

Pi = G(F (Ii)), low level features: Vi = F (Ii).
6: else
7: Propagation:
8: Warp predictions: P̂i =WMV (Mi, P∗)
9: Buffer for multi-hop reference: P∗ ← P̂i

10: Warp features: V̂i =WMV (Mi, V∗)
11: Confidence Re-weighting:
12: Compute features: Vi = F (Ii)
13: Compute confidence-weighted prediction:

Ṗi = S(Vi, V̂i) · P̂i

14: Correction:
15: Binarize residual: eb = |greyscale(e)| > τ
16: Get warped foreground mask:

Ŝ = 1[argmax(ψ(P̂)) > 0]
17: Get dilation of the foreground mask:

Ŝ+ = dilate(Ŝ)
18: Get selected pixels to correct: S̃ = U(eb, Ŝ+)
19: Feature matching:

P̄i = feature-matching(S̃, Pk∗, Vi, Vk∗)+P̂i

20: Decoder:
Pi = D

(
[P̂i, Vi, Ṗi, P̄i]

)
21:
22: Output: All segmentations S = argmax(ψ(Pi))

is performed on an RTX A5000 GPU for half a day. To
reuse the weights on other base models, we simply compute
the low-level features of the keyframes with the low-level
feature encoder from MiVOS. The corresponding overhead
is already included in the reported times.

1

Soft Motion Vector Propagation Module
Decoder D: The lightweight decoder in the soft prop-

agation module as given in Equation 9 of the main paper
is composed of two convolutional layers and three residual
layers. Specifically, it has

Conv2d(289,128)->Conv2d(128,64)->
ResBlock(64,64)->ResBlock(64,64)->
ResBlock(64,64)->Conv2d(64,11)->Upsampling.

For all the layers, the kernel size is 3 with a padding of
1. We use BasicBlock of ResNet18 here as the ResBlock
without the batch normalization. Final predictions are up-
sampled by 4 with bi-linear interpolation.

Residual Correction Module
Feature matching S̃ provides an indication of which

areas in the propagated mask will require correction. For
each pixel in S̃ indexed by a at frame n, we search in the
temporally closest keyframe k∗ and match between Vn and
Vk∗ . Specifically, we define Wak as the affinity between
the feature at pixel a in Vn, i.e. V a

n , and all pixels in Vk∗ .
The corrected mask prediction at pixel a is then obtained
by P a

n = WakPk∗ . Following STCN [2], we use an L2-
similarity function to compute the affinity matrix, where
Wak ∈ R1×HW :

(Wak)b =
f(V a

n , V
b
k∗)∑

m(f(V a
n , V

m
k∗))

. (1)

f is the L2 similarity function:

f(V a
n , V

b
k∗)=exp(−||V a

n −V b
k∗ ||22). (2)

Timing Analysis
As analyzed in Section 5.4, we estimate the amortized

per frame inference time via

Tbase ·R+ (Tpropagation+Tcorrection)·(1−R), (3)

where R denotes the ratio of keyframe. Tbase denotes
the inference times of the base segmentation model, while
Tpropagation and Tcorrection denote the time for motion-vector-
based propagation, and time for residual correction, re-
spectively. We measured the propagation and correction
time on DAVIS17 with an RTX-2080Ti, and the sum
(Tpropagation+Tcorrection) is 12ms.

Base model timing Tbase

One of the key variable components in the timing is Tbase.
Our reported values do not match the published FPS of the
respective works for the base models. When only keyframes

are fed into the base model, the Tbase for fine-tuning-based
models will be higher but shorter for memory-based models.
We elaborate on the details below.

Fine-tuning based model contains two components for
timing: online fine-tuning and segmentation. Applying the
model to fewer frames, i.e. only on the keyframes, will
reduce the segmentation time, but the online fine-tuning
time remains the same. This leads to a higher Tbase than
the published FPS, as online fine-tuning dominates and is
less amortized over the various frames. Table 1 shows Tbase
for a fine-tuning based base model FRTM [4]. Adding on
our framework is less ideal, because the overall FPS largely
depends on how much time the model spends on online fine-
tuning, and reducing the number of frames processed by the
base model does not provide much speed-up.

Table 1. FRTM [4] base network timing analysis on DAVIS17

Frames used by base model FRTM [4] Tbase(ms)
All frames in sequence 71.0
Only keyframes (37.2% of all frames) 115.3

Memory-based models also have two components for
timing: memory reading/update and segmentation. Using
fewer keyframes can reduce both components. The total
memorized frames are directly proportional to the total num-
ber of frames applied to the base model multiplied by the
update frequency. Keeping the same update frequency as the
original base model results in a memory proportional to the
percentage of keyframes. This is equivalent to increasing
the interval between the stored frames in the memory for the
original video sequence.

On DAVIS17, decreasing the update frequency reduces
the keyframe accuracy. As shown in Table 2, keeping the
same update frequency for keyframes uses only 36% of de-
fault memory, but results in a near 0.5 point drop on both
J and F scores. Yet, updating with every keyframe would
exceed the original frequency interval used during training.
This incompatibility causes the accuracy to drop. Addition-
ally, it exceeds the original memory by 81% and is nearly
46ms slower than the default memory setting. In our re-
ported result in Section 5.2 of the main paper, we make a
trade-off between efficiency and accuracy and update every
two keyframes. This gives base times and a memory size
approximately equal to the original base model.

In Table 3, we find that for YouTube-VOS, updating the
memory every five keyframes achieves comparably accurate
segmentations. As the original base model has a setting of
updating every five frames over the entire sequence, this is
the setting we choose for our results in Section 5.2 of the
main paper. Updating every keyframe would result in 35%
more memory and 49ms slower at segmentation.

There is a difference in the memory update frequency
between DAVIS and the YouTube-VOS dataset mainly be-

Table 2. Time and accuracy analysis on DAVIS17 on RTX 2080Ti (default encoder settings, 36.1% keyframes). The star denotes the setting
used for our main result in Section 5.2. The frame % in memory is tabulated as a percentage of the original base model when applied to all
frames of the sequence.

Model Update frequency Frame % in memory Tbase(ms) J F
MiVOS [1] every 5 frames 100% (by default) 89.3 81.7 87.4
MiVOS on keyframes every keyframes 181% 134.8 78.9 83.9
MiVOS on keyframes every 2 keyframes* 90% 87.9 79.7 84.6
MiVOS on keyframes every 3 keyframes 60% 78.9 79.3 84.2
MiVOS on keyframes every 5 keyframes 36% 73.8 79.1 84.1

Table 3. Time analysis for base model on the first 30 sequences of YouTube-VOS on RTX A5000 (default encoder preset, 27.2% keyframes).
We do not have access to the per-frame segmentation accuracies as evaluation scores and tallied privately over a test server. Here, we report
the combined score G averaged over all the frames for all sequences. The star denotes the setting used for our main result in Section 5.2. The
frame % in memory is tabulated as a percentage of the original base model when applied to all frames of the sequence.

Model Update frequency Frames % in memory Tbase(ms) G
MiVOS [1] every 5 frames 100% (by default) 77.0 82.6
MiVOS on keyframes every keyframe 135% 96.3 79.3
MiVOS on keyframes every 2 keyframe 68% 58.3 79.4
MiVOS on keyframes every 3 keyframe 45% 49.6 79.5
MiVOS on keyframes every 5 keyframes* 27% 47.0 79.3

cause 1) YouTube-VOS has a higher frame rate than DAVIS
(30FPS vs. 25FPS), and 2) YouTube-VOS is less dynamic in
terms of object appearance. The I-/P-frames ratio between
YouTube-VOS and DAVIS is 27.2% and 36.1%, respectively.
Under the same encode setting, YouTube-VOS results in
10% fewer I-/P-frames than DAVIS. Lower temporal density
makes YouTube-VOS require less frequent memory updat-
ing.

Table 4. Warping method towards target objects of different sizes on
propagated frames on DAVIS17. Each entry shows J&F scores of
non-keyframes. Keyframes are selected under the default encoder
preset.

DAVIS17
small medium large

Optical Flow 60.9 75.1 81.0
MV to Flow 60.0 73.0 77.8
Ours 72.7 89.7 91.9
Base model without propagation [1] 76.8 91.9 92.3

Impact of Object Size
To better understand the capabilities of mask propagation

using motion vector warping, we further evaluate according
to different sized objects. We split the object masks into
three categories based on their total pixels and report the
segmentation accuracy in Table 4 according to object size.
Small objects have less than 10k pixels, i.e. approximately
100×100 or smaller, medium objects are between 10k and
30k pixels, i.e. between approximately 100×100 and 170×
170 pixels, and large objects have more than 30k pixels, i.e.
larger than 170×170 pixels. This results in an approximately
even split of 32%, 35%, 33% for DAVIS17. As expected,

segmentation performance is proportional to the object size
category, as smaller objects have less support in the scene
and are therefore more challenging.

Similar to the results in Table 2 of the main paper, we
observe that our bi-directional and multi-hop motion vector
propagation’s accuracy exceeds "Optical Flow" warping and
naive "MV to Flow" [5] by a large margin on DAVIS17.
Compared to per-frame inference without any propagation,
our proposed propagation and correction achieve excellent
segmentation accuracies on medium and large objects. In-
terestingly, for the large objects, we are able to achieve
comparable results with the original base model. This result
validates the effectiveness of our motion vector-based soft
propagation and residual-based correction.

Our propagation and refinement scheme is less effective
on small objects (100× 100). Small objects are challenging
for many segmentation methods, and given the lightweight
nature of our decoder, we observe a similar weakness in our
system. We believe that the results can be improved if we
choose to use deeper features and a more powerful decoder,
but more computational cost will be applied.

Qualitative Comparison

Fig. 1 highlights success cases compared with other state-
of-the-art methods and the base model, where our method
can provide a full mask and recover most of the boundary
detailing compared to the base model.

Fig. 2 shows some sample cases of our residual correction
module. In the bmx-trees sequence, we are able to recover
the bike from the residual. Similarly, in the kite-surf se-
quence, where most of the human body is missing in the
propagation, we successfully recover it from the residual.

However, we fail to estimate the correct label of the band
due to its similar appearance to the human body.

Fig. 3 shows some challenging cases for our methods. In
the motocross-jump sequence shown in the first and second
row, the motion vector fails to capture the fast scene change,
resulting in inaccurate segmentations as highlighted with
white rectangles.

We show more qualitative examples on the DAVIS dataset
in Figure 4 and 5.

Licence
The annotations in DAVIS belong to the organizers of

the challenge and are licensed under the BSD License. The
annotations in YouTube-VOS belong to the organizers of
the challenge and are licensed under a Creative Commons
Attribution 4.0 License. Code and pretrained weights for
MiVOS, STCN and FRTM-VOS are under GNU General
Public License v3.0.

References
[1] Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. Modular

interactive video object segmentation: Interaction-to-mask,
propagation and difference-aware fusion. In CVPR, 2021.

[2] Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. Rethink-
ing space-time networks with improved memory coverage for
efficient video object segmentation. In NeurIPS, 2021.

[3] Seoung Wug Oh, Joon-Young Lee, Kalyan Sunkavalli, and
Seon Joo Kim. Fast video object segmentation by reference-
guided mask propagation. In CVPR, 2018.

[4] Andreas Robinson, Felix Jaremo Lawin, Martin Danelljan,
Fahad Shahbaz Khan, and Michael Felsberg. Learning fast and
robust target models for video object segmentation. In CVPR,
2020.

[5] Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R Manmatha,
Alexander J Smola, and Philipp Krähenbühl. Compressed
video action recognition. In CVPR, 2018.

FRTM STM MiVOS+CoVOS Ground Truth MiVOS

Figure 1. Qualitative comparison with state-of-the-art methods. With MiVOS as the base model, we propagate most of the segmentation,
while competing methods FRTM and STM exhibit several failures, e.g. fail to provide a precise mask (row 1: body of dancer, row 2: cart),
distinguish similar objects (row 3: two piglets get merged) or provide more precise boundaries (row 4: kite handle).

Ground Truth MiVOS MiVOS+CoVOSMiVOS+CoVOS
 (no residual correction)

Figure 2. Cases where motion vectors fail to correctly propagate the segmentation masks, but we recover the correct masks through residual
correction. Label recovery through feature matching sometimes fails to distinguish similar regions as we only use very low-level features
(second row).

FRTM STM Ground Truth MiVOS MiVOS+CoVOS

Figure 3. Our method struggles in cases of abrupt motions, which lead to inaccurate motion vectors (see white rectangle highlights).

Ground Truth MiVOS MiVOS+CoVOS

Figure 4. Qualitative comparison on DAVIS17.

Ground Truth MiVOS MiVOS+CoVOS

Figure 5. Qualitative comparison on DAVIS17.

