
Supplementary Material for
Back to Reality: Weakly-supervised 3D Object Detection with Shape-guided

Label Enhancement

Xiuwei Xu1,2, Yifan Wang1, Yu Zheng1,2, Yongming Rao1,2, Jie Zhou1,2, Jiwen Lu1,2*

1Department of Automation, Tsinghua University, China
2Beijing National Research Center for Information Science and Technology, China

{xxw21, yifan-wa21, zhengyu19}@mails.tsinghua.edu.cn; raoyongming95@gmail.com;
{jzhou, lujiwen}@tsinghua.edu.cn

Abstract

This supplementary material is organized as follows:

• Section 1 details the Approach section in the main pa-
per.

• Section 2 shows the implementation detail of WS3D.

• Section 3 details our augmentation strategy for small
objects during training.

• Section 4 shows more experimental results.

1. Approach Details
In this section, we show the details in our approach,

which is divided into shape-guided label enhancement and
virtual2real domain adaptation.

1.1. Label Enhancement

We show the exact definitions of some concepts appeared
in Section 3.2 of the main paper as below.

Shape Properties: The MER is computed in XY plane,
which is the minimum rectangle enclosing all the points of
the object template. The SSH is the height of the largest
surface on which other objects can stand. The CSS is a
boolean value, indicating whether the supporting surface is
similar with the MER (i.e. we can use the MER to ap-
proximate the supporting surface if CSS is true).

In order to calculate MER, we use the OpenCV [2] tool-
box to calculate the MER of 2D point set. As OpenCV
cannot be directly utilized to process point clouds, we first
project the object templates to XY plane to acquire 2D
point sets. Then we calculate the MER of a point set

*Corresponding author.

S = {(x1, y1), (x2, y2), ..., (xn, yn)} as below:

(x, y, l, w, θ) = minAreaRect(1000 ∗ S) (1)

MER = (x, y,
l

1000
,

w

1000
, θ) (2)

where minAreaRect is a function in OpenCV, which
takes integer 2D point set as input and returns a
rectangle, and rectangle is represented by a quintuple
(x, y, length, width, θ), which indicates the center coor-
dinate, length, width and rotation angle of a rectangle.
1000 ∗ S means that we multiply all the coordinates in S
by 1000 and then convert the coordinates from float to inte-
ger, which can reduce the rounding error.

To compute SSH , we first utilize Open3D [1] to get the
normals of each point from point cloud. Then if the normal
of a point is almost vertical (i.e. the normal’s length along
Z-axis is greater than 0.88), we record the coordinate of this
point. After traversing all the points, we have recorded a list
of coordinates. We sort the list according to the Z coordi-
nate in ascending order, and the list of sorted Z coordinate
is named as lz . Then get a slice of lz from index ⌊ 4

5 lenz⌋ to
⌊ 9
10 lenz⌋, where lenz denotes the length of lz . SSH can be

calculated by averaging this slice. Note that this algorithm
suppose the supporter has a large supporting surface on its
top, and it can tolerate 10% points higher than this surface.

To calculate CSS, we collect points which satisfy
SSH− 1

10h < z < SSH+ 1
10h from the given object tem-

plate, where h is the height of this object template. Then we
project these points to XY plane and name them supporter
points PS . If PS can almost fill the MER, the CSS is set
to be True. To analyze the compactness, we use K-means
algorithm to divide PS into 2 clusters: PS1 and PS2. Then
we calculate the area of convex hull of PS1 and PS2. The
area is computed by using OpenCV:

A =
contourArea(convexHull(1000 ∗ P))

1000000
(3)

Table 1. The class-specific detection results (mAP@0.5) of different weakly-supervised methods on ScanNetV2 validation set. (FSB is the
fully-supervised baseline. † indicates the method requires a small proportion of bounding boxes to refine the prediction. Other methods
only use position-level annotations as supervision.)

Setting batht. bed bench bsf. bot. chair cup curt. desk door dres. keyb. lamp lapt. monit. n.s. plant sofa stool table toil. ward. mAP@0.5

Vo
te

N
et

FSB [7] 69.8 76.9 6.7 26.0 0.0 67.6 0.0 10.2 30.0 13.3 21.1 0.0 15.5 0.0 19.6 47.9 3.1 70.4 10.1 38.9 85.0 2.7 28.0
WSB 0.0 11.5 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.2 0.7 0.0 0.2 0.0 0.1 2.5 0.0 0.8
WS3D † [6] 0.0 22.7 0.0 0.0 0.0 12.2 0.1 0.0 0.3 0.0 0.0 0.0 1.1 0.0 1.3 11.3 0.0 0.1 0.2 1.4 16.4 0.0 3.1
WSBPP 0.0 3.7 0.0 0.1 0.0 28.4 0.0 0.0 1.1 0.5 0.0 0.0 1.2 0.0 0.0 26.1 0.0 0.9 4.4 0.8 7.6 0.6 3.4
WSBPM 12.3 1.3 0.0 0.3 0.0 16.5 0.0 0.0 4.1 0.1 0.0 0.4 5.9 0.0 0.1 26.9 0.4 3.3 5.4 0.8 4.8 0.1 3.8
BRP (Ours) 36.8 15.2 1.2 6.9 0.0 42.7 0.0 0.0 4.4 1.3 2.1 0.0 9.0 0.0 2.7 31.4 1.3 14.4 4.1 8.3 51.6 0.0 10.6
BRM (Ours) 9.6 59.2 0.2 12.8 0.0 37.9 0.0 0.0 22.1 1.0 6.2 0.0 10.6 0.0 2.1 44.6 2.7 33.0 2.0 25.3 57.0 0.1 14.8

G
ro

up
Fr

ee
3D

FSB [5] 75.7 75.6 4.5 28.4 0.0 75.3 0.0 20.3 47.4 24.7 29.5 0.3 20.4 0.0 37.5 61.4 3.7 74.6 37.1 51.1 96.2 11.7 35.2
WSB 1.9 24.7 0.0 0.1 0.0 31.2 0.0 0.0 0.1 0.1 0.0 0.0 6.5 0.0 2.1 1.5 0.1 2.6 2.0 0.5 54.3 0.0 5.8
WS3D† [6] 3.8 25.7 0.0 0.1 0.0 36.4 0.0 0.0 2.1 0.0 0.3 0.3 10.2 0.0 7.5 16.4 0.2 2.7 4.5 0.4 68.3 0.0 8.1
WSBPP 1.9 5.2 0.0 1.3 0.0 31.8 0.0 11.3 1.1 0.1 0.0 0.0 18.7 4.4 1.0 48.1 1.3 1.3 1.3 0.6 62.0 1.8 8.3
WSBPM 4.9 16.7 0.0 0.5 0.0 34.1 0.0 0.1 5.6 0.2 0.5 0.1 9.0 4.6 8.9 48.5 0.9 9.9 12.3 3.4 51.9 0.0 9.6
BRP (Ours) 83.6 79.1 0.0 10.8 0.0 53.5 0.0 0.0 0.0 1.6 3.7 0.0 19.6 50.0 6.5 60.0 16.7 21.1 5.7 14.6 90.1 0.0 23.5
BRM (Ours) 83.3 65.0 0.0 4.1 0.0 56.2 0.0 0.5 11.8 2.1 16.7 1.2 23.8 12.5 16.0 80.0 17.5 42.2 28.6 28.0 99.2 0.0 26.8

where contourArea and convexHull are functions in
OpenCV, P is a 2D point set and A is the area of P . The
areas for PS1 and PS2 are A1 and A2 respectively. So we
can compute CSS as below:

CSS =

{
True, A1 +A2 > 0.9 ∗ l ∗ w
False, otherwise

(4)

where l and w are the length and width of the MER of this
object template.

Segment Properties: Next we provide the definitions of
horizontal segment, the area of segment and the height of
segment.

For a segment, we define z as the Z coordinate of all the
points on it. Then if |maximum(z) − median(z)| < 0.2
or |minimum(z) − median(z)| < 0.2, we consider this
segment is horizontal. To calculate the area of segment,
we directly utilize (3) and take all points on the segment
as input (ignore the Z coordinates of points). To compute
the height of a segment, we follow the same procedure as
computing SSH: we first calculate the normals and pick
out points with normals that are almost vertical, and then
we pick out the Z coordinates of these points and acquire a
list lz . The segment’s height is defined as the mean of lz .

1.2. Domain Adaptation

We first provide detailed definition of L3. Then we show
the architectures of our center refinement module and the
two discriminators.

For weakly-supervised training, as only objects’ centers
and semantic classes are available, we set L3 as a simpler
version of L2:

L3 = Lf + Li, Lf = Ls + Lo + Lc (5)

Lf is used to supervise the final prediction, where Ls and
Lo are the cross entropy losses for semantic labels and ob-

jectness scores, and Lc is defined as:

Lc =
∑
i

max(||Cgi − Ci||2 − λSgi, 0) (6)

which denotes the hinge loss for centers. Ci is the i-th pre-
dicted center, Cgi is the nearest ground-truth center to Ci,
and Sgi indicates the average size for the semantic class of
this object. We set λ = 0.05 to approximate the labeling
error of centers. For Li, we only make use of the center
coordinates to weakly supervise the intermediate process of
training. For example, in VoteNet [7], the detection mod-
ule predicts votes from the semantic features and aggregate
them to generate object proposals, in which voting coordi-
nates are the intermediate variables need to be supervised.
Here we utilize the Chamfer Distance between the voting
coordinates and the ground-truth center coordinates to su-
pervise the voting. In GroupFree3D [5], the detection mod-
ule utilize KPS to sample the semantic features and gen-
erate initial object proposals, where the sampled points re-
quire supervision. Originally the KPS operation requires us
to sample the nearest k points to the object center from the
point cloud belong to this object. However, we weaken this
requirement and sample the nearest k points without any
constraints.

For the center refinement module, we adopt the Set Ab-
straction (SA) layer [8] to extract feature from the local
KNN graph. Then a MLP is utilized to predict center off-
set from the feature. The SA layer first concatenates the
relative coordinates between the center and its neighbors to
the features of the neighbors, which is followed by a shared
MLP (MLP (256, 128)1) and a channel-wise max-pooling
layer. The pooled feature contains the local information of
the center, which is then concatenated with the one-hot vec-
tor of the center’s semantic class (we name the feature after

1Numbers in bracket are output layer sizes. Batchnorm is used for all
layers with ReLU except for the final prediction layer in MLP (64, 3).

Figure 1. Architecture of the global and proposal discriminators.
(Global on the left, proposal on the right.)

concatenation as center feature). We utilize another MLP
(MLP (64, 3)) to predict the center offset from the cen-
ter feature. For the global and proposal discriminators, we
show their architectures in Figure 1.

2. Implementation Detail of WS3D

In this section, we show how we implement WS3D [6]
to adapt to indoor 3D object detection task.

2.1. Introduction of WS3D

Here is a simple summary of WS3D: The authors anno-
tate the object centers in the bird’s eye view (BEV) maps,
which takes 2.5s per object. Then they utilize a two-stage
approach to detect a specific category of objects (the au-
thor focus on Car in their paper), which can be divided
into proposal and refinement stages. At the proposal stage,
WS3D creates cylindrical proposals from the labeled cen-
ters, whose radius and height are fixed since the sizes of cars
are close. Therefore the probability of a car being wrapped
in a cylindrical proposal is high. Then a network (Net1)
is trained to generate proposals from a point cloud scene.
At the refinement stage, another network (Net2) is trained
to take in the cylindrical proposal and output the bounding
box of the car contained in the proposal, where around 3%
well-labeled instances are used for supervision.

2.2. Proposal Stage

Since the indoor scenes in ScanNetV2 are more compli-
cated, the size and height of each object is different, even
for objects in the same class. Therefore we annotate the ob-
ject centers in 3D space rather than in the BEV map, which
is the same labeling strategy with us and takes 5s per ob-
ject, to provide stronger supervision for WS3D. Instead of
using a simple fixed-size cylinder as the proposal, we uti-
lize a cuboid instead, whose size (length, width and height)
is 1.5 times the average size of the object’s category. In this
way we are able to generate a more reasonable proposal.

During this stage, we can adopt different detectors as
Net1. Net1 is trained with position-level annotations and
used to predict the centers and semantic labels of objects
(we adopt VoteNet and GroupFree3D as Net1 in our ex-
periments). Then we generate cuboid proposals from the
predicted centers and classes.

2.3. Refinement Stage

We find 3% well-labeled bounding boxes are not enough
to train the Net2, as there 22 categories in our benchmark
and the size of each object is very different, so we use
around 15% bounding boxes instead. The proposals gen-
erated from the previous stage are post-processed by a 3D
NMS module with an IoU threshold of 0.25, and then re-
fined into precise bounding boxes by Net2.

We adopt a PointNet++-like module as Net2, whose in-
put is the point cloud inside the cuboid proposal and output
is the refined center coordinate, box size and box orienta-
tion.

3. Augmentation Strategy
As the number of scenes which contain small objects2

and the probability of small objects being sampled are rel-
atively smaller than others, it is difficult for the detector to
learn how to locate small objects in complex scenes. There-
fore we utilize an augmentation strategy similar to [4] to
handle the problem.

During trianing, we oversample the virtual scenes which
contain small objects twice in each epoch. We further copy-
paste small objects to the oversampled virtual scenes: for
each small object, we copy it with a probability of 0.75 and
paste it randomly in the scene (the pasted center must be in
the axis-aligned bounding box of the whole scene). Then
we apply gravity and collision contraints and control the
densities of these added small objects as mentioned in the
virtual scene generation method.

Apart from small objects, we also consider the scarce
objects3, as the number of them is relatively small and thus
the detector is not sufficiently trained on these categories.

2Small objects are {bottle, cup, keyboard}.
3Scarce objects are {bathtub, bench, dresser, laptop, wardrobe}.

We add the scarce objects to the oversampled virtual scenes
to expand the number of them. We first decide how many
objects of each scarce category we should add according to
Table 2 in the main paper, where we set 40, 70, 15, 55 and
50 for bathtub, bench, dresser, laptop and wardrobe respec-
tively. Then we choose scenes which are suitable for adding
these objects by calculating the value of correlation between
scenes and scarce categories as below:

Corr(s, c) =

22∑
i=1

lsi(vci − r) (7)

where s indicates a scene and c denotes a scarce category.
ls is a 22-dimensional boolean vector where lsi indicates
whether there is an object of the i-th category in s. vc is
a 22-dimensional vector which indicates the correlation be-
tween c and other categories:

vci =

{
Num(i,Index(c))
Num(Index(c)) , i ̸= Index(c)

0, i = Index(c)
(8)

where Num(...) is a function, whose input is a set of indexs
of category and output is the number of scenes which con-
tain objects in all the input categories. The larger vci , the
stronger the correlation between c and the i-th category. As
we hope the highly correlated scenes for c do not contain
too many categories with low vci , we introduce a penalty
term r to reduce the value of Corr(s, c) when there are a
large number of categories weakly correlated to c in s. We
set r = 0.25 in our experiments.

4. More Detection Results
We show 3D object detection results (mAP@0.5) of dif-

ferent weakly-supervised methods on ScanNetV2 [3] vali-
dation set in Table 1.

Consistent with the results on mAP@0.25, our BR ap-
proach achieves the best performance among all the weakly-
supervised approaches. Under a more strict metric, the
performances of most weakly-supervised approaches fail
to surpass 10% in terms of mAP@0.5, that shows it is
really hard to precisely detect the objects in a compli-
cated indoor scene for a detector trained with only position-
level annotations. However, the performance of BRM (for
GroupFree3D) still achieves 26.8% in terms of mAP@0.5,
which is comparable to the performance of fully-supervised
VoteNet.

We also find our BR approach works better on
GroupFree3D than on VoteNet (the gap between FSB and
BR is smaller). This may be due to the features extracted
by stronger detector has better generalization ability and
thus our virtual2real domain adaptation method can trans-
fer more useful knowledge contained in the virtual scenes
to real-scene training.

References
[1] Open3d: A modern library for 3d data processing. [EB/OL].

http://www.open3d.org/. 1
[2] Opencv. [EB/OL]. https://opencv.org/. 1
[3] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser,

and M. Nießner. Scannet: Richly-annotated 3d reconstruc-
tions of indoor scenes. In CVPR, pages 5828—-5839, 2017.
4

[4] M. Kisantal, Z. Wojna, J. Murawski, J. Naruniec, and K. Cho.
Augmentation for small object detection. arXiv preprint
arXiv:1902.07296, 2019. 3

[5] Z. Liu, Z. Zhang, Y. Cao, H. Hu, and X. Tong. Group-
free 3d object detection via transformers. arXiv preprint
arXiv:2104.00678, 2021. 2

[6] Q. Meng, W. Wang, T. Zhou, J. Shen, L. V. Gool, and D. Dai.
Weakly supervised 3d object detection from lidar point cloud.
In ECCV, pages 515–531, 2020. 2, 3

[7] C. R. Qi, O. Litany, K. He, and L. J. Guibas. Deep hough
voting for 3d object detection in point clouds. In ICCV, pages
9277–9286, 2019. 2

[8] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In
NeurIPS, pages 5099–5108, 2017. 2

http://www.open3d.org/
https://opencv.org/

	. Approach Details
	. Label Enhancement
	. Domain Adaptation

	. Implementation Detail of WS3D
	. Introduction of WS3D
	. Proposal Stage
	. Refinement Stage

	. Augmentation Strategy
	. More Detection Results

