
A. Motivation - Direct Extension of Pixel Space Adversarial Attack Does Not Work Well.

There is a large body of existing works that generate adversarial samples by constraining perturbation in the pixel space,

such as PGD [20], C&W [4], BIM [18], and FGSM [10]. They have a similar working mechanism. Take BIM as an example.

Given a perturbation bound such as 8/255, BIM iteratively perturbs individual input pixels following the gradient direction of

a cross-entropy loss function (that tries to induce misclassification). When a perturbed pixel value exceeds the bound, it simply

clips the value. The first design we explored was an extension of BIM in the feature space. Specifically, we first identify

internal neuron activation value ranges by profiling on the training input. Like the value bound in the pixel space attacks, we

use a min-max bound that determines the lower and upper bounds of an internal activation value based on its range and a fixed

percentage. For example, assume the profiled value range of a neuron is [0, 1000], and the current value of the neuron for a

benign sample is 500, a 10% bound allows the value to vary in [400, 600]. We clip the activation value if it exceeds the bound.

Note that clipping suggests that the gradient of this neuron becomes 0, and hence it has no effect in updating input pixels. We

update input pixels according to gradients just like in BIM. Instead of bounding the input pixel variations, we regulate the

internal activation value variations.

(a) Original

(conf.)

(b) D2B40

77.6

(c) Extension

46.4

Figure 6. Untargeted attack on ResNet152-Adv using an extension of classic pixel-space attack and our Attack. The second column is our

method. For the extension, we use a 2% min-max bound. See Appendix L and Appendix F for details. The first row presents the original

image and the corresponding adversarial samples. The second row visualizes the perturbation applied on the natural image. Conf. means

attack confidence.

However, we find that such a direct extension does not work well. Figure 6 shows a benign example, the adversarial

version by our technique, and the adversarial version by the extension. Observe that the sample by the extension does not

look natural and has a smaller confidence value compared to ours. The reason is that internal space is different from the pixel

space. A fixed (percentage) value range makes sense in the pixel space as it directly reflects a fixed level of human perception

variation. In contrast, a fixed internal percentage value range may imply various levels of pixel changes and hence various

human perception levels. A comparative experiment can be found in Appendix F. This motivates our new attack design.

B. Binary Search for Optimization Step Size

In our adversarial example generation, a proper step size (learning rate) is crucial for reliable optimization. A small change

on the input can lead to a large quantile change on an internal throttle plane, which makes the optimization osillating and may

even lead to numerical exceptions. Choosing an optimal step size depends on model structure and the selected throttle plane(s).

It is impossible to manually preset a step size for all the cases. We hence leverage binary search to look for an appropriate step

size.

Specifically, we first determine a possible search range for step size, e.g. [0, 255] for the gradient sign method on RGB

values. We then choose the median value of the search range as a probing step size. We use this probing step size to conduct

optimization for a given number of steps. If the internal quantile change goes beyond the boundary, it means the probing

step size is too large for the optimization. We hence update the upper bound of the search range to the current probing value.

Otherwise, we update the lower bound with the probing value. We repeat the above search procedure for a given number of

iterations.



(a) Before (b) After

Figure 7. Results before and after smoothing for VGG16

C. Feature Smoothing

Occasionally, we observe the generated adversarial examples exhibit checkerboard patterns. Figure 7a shows a typical

adversarial example with checkerboard pattern (zoomed in on the right). We observe these cases often occur when we use

VGG16 as the reference model (the other reference model we use is ResNet152-Adv). We speculate that this is because

we enforce bounds for individual values (on a throttle plane) independently and do not consider their joint distribution

of nearby neurons. To mitigate the problem, we add a feature smoothing loss to the optimization goal. The intuition is

that individual values (on a plane) have a similar trend of change with their neighboring values. Thus we calculate the

average of surrounding changes and use a mean squared error loss to prevent the change from being too far away from

the average. Suppose y ∈ R
D×H×W denotes a throttle plane with channel D, height H and width W . The quantile

changes are written as ∆Qd,h,w = |Cd,h,w(y
adv
d,h,w) − Cd,h,w(y

nat
d,h,w)|/ϵ. The average of changes made to nearby values

can be formulated with an average pooling operation AvgPool3×3(∆Q). Thus we expect the smoothness loss, written as
α

D·H·W

∑

d,h,w[AvgPool3×3(∆Q)d,h,w −∆Qd,h,w]
2 to be small. We empirically set the weight of smooth loss to α = 10.

This can lead to 6% improvement in the human preference rate when VGG16 is used as the reference model. The smoothness

loss largely eliminates the checkerboard pattern as shown in Figure 7b. We also conduct an ablation study of feature smoothing

in Appendix G.

D. User Study

For the human study, there are 47 settings in total (for the eight attacks), including the studies in Appendix K and L.

Adversarial samples and generated and labeled by MTurk users for each setting. There are 282 users participated in our studies.

275 out of the 282 responses are considered valid, with those deviating far from the majority (exceeding two times of the

standard deviation) removed. We post all the examples used in the human study on an anonymous website [37].

In this section we report the procedure of the user study as shown in Figure 8. Our user study closely follows the one in

exiting work [40]. For each image pair, users will go through three steps to complete the study. In the first step, an adversarial

sample and a real image are shown in a random order for 2.5 seconds each. In the second step, users are asked to choose which

image looks unnatural. Specifically, users are given the following instructions.

“You will take part in an experiment involving visual perception. You’ll see a series of pairs of images. In each pair,

one image is a real photo while the other image is a ‘fake’ image generated using a computer program. Your task is

to determine which image is fake. Sometimes the fake images may look very plausible.”

There is an additional third step in the test drive, in which users are given feed-back of whether their answers are correct.

E. Choosing Throttle Planes

As we know, different layers represent features of various types, e.g., shallow layers for concrete features and deep layers

for abstract features. For imperceptibility, a good idea is to simultaneously harness both concrete features (e.g. local textures)

and abstract features (e.g. global outlines). Driven by this intuition, we use multiple throttle planes simultaneously instead

of a single one. Guided by our principle of looking for normal distributions, we check the normality of various layers in a

model and identify a throttle plane list. We empirically choose three representative throttle planes for each model. We conduct

the selection of throttle planes for ResNet152-Adv and VGG16. The specific locations of throttle planes we choose can be

found in Table 3, and the corresponding distribution samples from these chosen throttle planes can be found at Appendix R.

Note that although our reference models are these two, the target models can be arbitrary. For the visual quality studies, we

consistently used the throttle planes from VGG16.



(a) Step One

(b) Step Two

(c) Optional Step Three

Figure 8. Example of the human study (images zoomed out). The adversarial sample used in the example is from spatial attack. During the

real survey, users will see images with a similar size of the screen.

Table 3. Chosen throttle planes for each model

Model Plane 1 Plane 2 Plane 3

ResNet152-Adv a. the first conv. b. group 1 b. group 2

VGG16 a. conv1_2 a. conv2_2 a. conv3_3

Notation a. represents right after an operation. Notation b. represents the throttle plane which lies in the last block in the group and before

the last ReLU operation; conv. represents a convolution layer.

F. Comparing Optimization Methods

As discussed in Section 3.2, there are other optimization methods that can be used for our adversarial example generation

such as two-step optimization and clipping. We conduct an experiment for those methods in comparison with our polynomial

barrier method. The same optimizer, i.e., the Gradient Sign Method, is used for all the methods during evaluation. We use the

adversarially trained ResNet152 model as our study subject. The throttle plane used in this evaluation is the plane in the last

layer of Block 2. We use a bound of 1% of the difference between the minimum and maximum activation values, which are

computed on the entire training dataset. Here, we use a value bound instead of a quantile bound to make different optimization

methods comparable. For the two-step optimization method, we set the number of iterations to 100. At each iteration, we first

optimize the internal values once and then the input ten times. We set the step size to 10% of the internal boundary for the

internal optimization, and 2.6e−3× 255 for the input optimization. This optimization setting is similar to that in the paper [17].

For the clipping method, we optimize for 1000 iterations, and at each iteration we update the input once using the step size of

2.6e−3× 255. For our algorithm, we run 1000 iterations with the step size of 6.2e−3× 255.

Table 4 illustrates the results. Feasibility denotes the percentage of samples remaining in boundary after the opti-



mization. Average size denotes the average boundary size of all the samples. We calculate the size using the equation

maxi∈I

[

ReLU(yi
adv−yi

nat)
high−yi

nat + ReLU(yi
nat−yi

adv)
yi

nat−low

]

. Consistency denotes if the target internal values can be produced in the

original model. Note that these optimization methods insert additional operations (e.g., clipping) that essentially change the

dataflow of the original model. An observed internal value in the optimizing model may not be feasible in the original model.

Success rate measures the percentage of generated samples that successfully induce misclassifications. It can be observed that

most samples are still feasible after our optimization, while the other two methods cannot enforce the bound. Note that even

though the clipping method clips internal values and suppresses gradients, updates on the input can still induce internal values

that go beyond bound. The average boundary size of our method is much smaller than the other two, indicating that our barrier

loss function can effectively enforce the bound. Adversarial samples generated by the other two methods are hence much less

natural-looking. For consistency, we observe that the two baseline methods do not have any guarantee. As the subject model

is adversarially trained and the internal bound is very tight, the attack is difficult to succeed. Nonetheless, our method still

outperforms the baselines regarding the attack success rate.

Table 4. Comparison of optimization methods.

Method
Boundary

Consistency Succ. Rate
Feasibility Avg. Size

Polynomial Barrier Method 97% 91% Yes 25.8%

Two-step Optimization 0% 204% No 21.9%

Clipping 0% 429% No 21.9%

G. Ablation Study on Feature Smoothing

In this section, we study the effectiveness of feature smoothing in eliminating artifacts. We report human preference rate

and attack success rate of untargeted attacks on ResNet152-Adv in Table 5 with controlled experiments (with and without

feature smoothing). We conduct the experiment using VGG16 as the reference model (since the other reference model does not

introduce the checkerboard pattern). The results show that feature smoothing increases both success rate and human preference

for the VGG16 reference model. A possible explanation is that feature smoothing, as a regularization term, decreases the

difficulty of internal optimization, and thus implicitly increases the success rate. We find that the checkerboard pattern is

largely eliminated. As these patterns provide a shortcut for humans to decide the naturalness, different scales of D2B with the

checkerboard pattern have similar human preference rates (first and third row in Table 5). After applying feature smoothing,

the pattern disappears and users can not easily distinguish the generated images from the real ones.

Table 5. Human preference of generated examples with and without feature smoothing

Method Reference Model Smoothing Human Pref. Success Rate

D2B50 VGG16 ✗ 14% 100%

D2B50 VGG16 ✓ 20% 100%

D2B10 VGG16 ✗ 13% 62%

D2B10 VGG16 ✓ 50% 67%

H. Evaluation on Different Models and Their Corresponding Distances

In this section, we evaluate D2B with different quantile changes on 4 models including DenseNet, MobileNet, VGG19

and ResNet50. We use the same setting as in Section 4. The results are shown in Table 6. We have similar observations

as in Table 1 (Section 4). With a similar or higher level of attack confidence, our attack has a smaller ℓ2 pixel distance and

ℓ∞ quantile distance on all the three planes compared to BIM4. This indicates that our attack is more effective in bounding

internal perturbations and can generate more natural-looking adversarial examples. We also observe that D2B induces a larger

ℓ∞ pixel distance with a smaller ℓ2 pixel distance compared to BIM4 at similar level of attack confidence, which indicates the

piggy-backing nature of our attack.



Table 6. Targeted attacks on various models

Models Attack Confidence
Pixel Distance ℓ∞ Quantile Distance

ℓ2 ℓ∞ Plane 1 Plane 2 Plane 3

MobileNet

BIM4 47.64 10.51 0.04 0.58 0.78 0.88

D2B10 26.17 3.22 0.05 0.06 0.08 0.09

D2B20 39.82 4.86 0.06 0.11 0.15 0.17

D2B30 44.52 5.55 0.07 0.17 0.23 0.26

D2B40 47.04 5.92 0.08 0.22 0.30 0.34

D2B50 47.92 5.99 0.08 0.28 0.38 0.43

DenseNet

BIM4 49.21 10.68 0.04 0.59 0.81 0.89

D2B10 20.60 3.48 0.05 0.06 0.08 0.09

D2B20 41.14 5.74 0.08 0.11 0.16 0.17

D2B30 50.94 6.81 0.09 0.17 0.24 0.26

D2B40 56.33 7.45 0.10 0.23 0.33 0.35

D2B50 60.10 7.93 0.11 0.29 0.40 0.44

VGG19

BIM4 56.64 12.13 0.04 0.68 0.88 0.97

D2B10 -2.33 2.82 0.04 0.07 0.09 0.09

D2B20 7.60 5.58 0.08 0.13 0.17 0.19

D2B30 18.37 7.97 0.11 0.20 0.26 0.29

D2B40 29.74 9.87 0.12 0.27 0.35 0.38

D2B50 40.49 11.59 0.14 0.33 0.44 0.48

ResNet50

BIM4 81.91 10.81 0.04 0.62 0.83 0.90

D2B10 30.29 4.26 0.07 0.06 0.08 0.09

D2B20 58.82 6.27 0.09 0.12 0.16 0.17

D2B30 72.43 7.28 0.10 0.18 0.24 0.26

D2B40 80.06 7.88 0.11 0.24 0.32 0.35

D2B50 84.52 8.25 0.11 0.30 0.41 0.44

I. Additional Table for Targeted Attack

In this section, we report the target attack success rate on ResNet-50 in Table 7 (similar to Figure 5). Observe that

most settings yield 100% success rate (as the model is not adversarially trained) and thus the success rates provide limited

information in the comparison.

Table 7. Comparison of attack success rate of target attack on ResNet-50

Success Rate Human Preferance SSIM

No Attack 0% 50% 1.00

D2B10 93% 52% 0.99

D2B20 100% 49% 0.97

D2B30 100% 45% 0.96

D2B40 100% 39% 0.96

D2B50 100% 43% 0.95

BIM1 100% 50% 0.99

BIM2 100% 45% 0.96

BIM4 100% 27% 0.88

BIM8 100% 9% 0.73

SM500 97% 14% 0.86

SM1000 100% 7% 0.84

FS1 69% 37% 0.77

FS2 97% 12% 0.65

Latent 1% 23% 0.78

SP1 69% 27% 0.85

SP2 100% 9% 0.80

Sparse 1% 20% 0.88

HC0.1 1% 4% 0.85

HC0.8 0% 31% 0.93



J. Comparing Two Barrier Loss Functions

We empirically set k = 1e5 and b = 200 in our polynomial barrier loss function. A large b value makes barrier

loss sharp around the margin. For example, when yi
adv is larger than yi

nat and close to the upper bound high, say
ReLU(y

i

adv−y
i

nat)
high−y

i
nat = 0.99, the loss is 1e5 × 0.99200 ≈ 1e4. Besides the polynomial barrier loss function, we have also

tried a linear barrier loss defined as follows.

Li(yi
adv) =k

{

ReLU
[

yi
adv − (b · high + (1− b) · yi

nat)
]

+ReLU
[

(b · low + (1− b) · yi
nat)− yi

adv
]

} (4)

Intuitively, the coefficient b allows us to start applying (linear) penalty when the value approaches the boundaries. Empirically

we set k = 1e6 and b = 0.95. It is worth noting that as a common drawback of barrier method, when yadvi goes beyond

the feasible boundary, the optimization may encounter numerical issues. However, with a properly setting of k and b, most

variables can maintain a safe distance from the boundary as we can see in Appendix F. Specifically, when yadvi is 9% of the

range away from the boundary, only 3% of samples go out of the boundary. When a numerical exception happens, we restore

the last feasible sample, decrease the learning rate and resume optimization.

We observe that the linearly growing penalty is not strong enough to discourage bound violation even with a large k value.

Figure 9 presents the polynomial barrier loss both converges faster and constrains the optimization better than the linear loss.

(a) Optimization Speed (b) Optimization Feasibility

Figure 9. Comparison of two barrier loss functions. Graph (a) represents the success rate (y axis) after a given step of optimization (x axis).

Graph(b) represents for a given success rate (x), how many examples have internal values within their boundary (axis).

K. Comparing Different Reference Models

Our throttle plane analysis is general and can be applied to various reference models. Different models encode features

differently such that they may have a different level of effectiveness. We experiment to compare the effectiveness of using

VGG16 and Resnet152-Adv as the reference model. Note that VGG16 has long been used as a typical feature extractor [16],

whereas Resnet152-Adv was recently reported as being useful in extracting features [15]. We conduct the same untargeted

attack on Resnet50 using these two as the reference model and compare the visual quality (of generated samples) and the

level of attack success. In Figure 10, we observe that the throttle planes on the two models have different characteristics. The

throttle plane in VGG16 promotes more natural-looking adversarial samples while being relatively less expressive. In contrast,

the throttle plane in Resnet152-Adv allows more harmful perturbation.

L. Comparing Different Deep Bounds

In this experiment, we compare the proposed deep distribution bound with the min-max bound mentioned at the beginning

of Appendix A, which is an extension of the fixed pixel range used in BIM and PGD. Different from the motivation example in

Section 3, here we use our proposed polynomial barrier loss to enforce both bounds instead of naive clipping. Specifically,

while the minimum and the maximum of RGB values are 0 and 255, we denote the supremum and the infimum activation



Figure 10. Attack Resnet-50 with different reference models. All the other settings are the same. The exact locations of throttle planes can

be found at Appendix E.

Figure 11. Comparison of deep distribution bound and deep min-max bound. We use the two bounds to attack Resnet152-Adv and report

their human preference rate and SSIM Score. The annotated numbers represent the percentage of the bound relative to BIM4.

value at neuron i over a distribution support S as supS yi and infS yi. The value bound for neuron i is thus as follows.

yadvi ∈

[

ynat
i −

(

sup
S

yi − inf
S

yi

)

ϵ,

ynat
i +

(

sup
S

yi − inf
S

yi

)

ϵ

] (5)

It is worth noting that, as the definition implies, the min-max bound only uses the information of the extreme values. While a

deep distribution bound uses information from the cumulative distribution function, which is much more informative than

just extreme values. Intuitively the rich information encoded in the deep distribution bound gives finer-grained control over

the adversarial changes. In Figure 11, we compare the two bounds under the same setting. Specifically, We attack the

Resnet152-Adv using the same VGG16 throttle plane. All the other settings remain the same except the bound. We measure

both the human preference rate and the SSIM score. We observe that the deep distribution bound consistently outperforms

the deep min-max bound on the SSIM score. In the human evaluation, for the ϵ relative to BIM4 greater than 20%, humans

consistently prefer the deep distribution bound. And with a smaller scale, the deep distribution bound is slightly worse than the

deep min-max bound. We conjecture this could be due to the randomness in human evaluation when the perturbation is at a

small scale.

M. Evaluation Against Detection Approaches

We evaluate D2B against three popular detection approaches: feature squeezing [39], JPEG [8], and [13]. We generate

100 adversarial examples for each of these approaches. For feature squeezing, we use the same settings as in the original



paper [39]. For JPEG [8], we compress the image with 75 quality. For [13], we use 30 examples for fine-tuning the threshold

and the remaining 70 for testing. We compare with three existing attack methods: BIM [18] (BIM4), feature space attack [38]

(FS1) and semantic attack [2] (SM50), whose settings were discussed in Section 4. For all the attacks, we generate untargeted

adversarial examples against the adversarially trained ResNet152 and targeted examples against the naturally trained ResNet50,

without knowing the existence of detection methods (i.e., not adaptive). Table 8 and Table 9 show the results. The three

columns for feature squeezing are the results for different defense settings. We can observe that our untargeted attack

D2B40 has the highest human preference. In the meantime, it achieves better success rates than the other attacks for feature

squeezing and JPEG; and comparable (and high) attack success rates for [13]. Recall that these attacks are on an adversarially

trained model and hence the detection techniques may not be able to add much, especially for our attack that closely couples

perturbation with existing features. Similarly for the targeted attacks, with a clearly better human preference rates, our attack

is more or comparably persistent in the presence of detection. Note that since this is a normally trained model, some detection

techniques such as feature squeezing may provide very good defense. Observe that our human preference rates in both

scenarios are high, indicating that our attack may potentially conduct more aggressive perturbation to evade detection (e.g.,

through adaptive attack). We want to point out while these detection techniques were not designed to guard against our

attack, it is still worthwhile to understand how D2B performs in the presence of these techniques. Detection and defense (e.g.,

adversarial training) specific for our attack will be the future work. We have also conducted a transferbility study of our attack.

We observe that D2B has a comparable/slightly-better transferbility than other attacks. Details can be found in Appendix O.

Table 8. Untargeted attacks on the adversarially trained ResNet152-

Adv and detection, with Pref. meaning human preference

Attack
Feature Squeezing

JPEG [13] Pref.
2x2 11-3-4 5-bit

BIM4 50/100 55/100 57/100 57/100 48/70 30%

FS1 46/100 46/100 46/100 48/100 48/70 35%

SM50 51/100 51/100 60/100 60/100 44/70 29%

SP1 52/100 41/100 55/100 46/100 48/70 23%

Latent 24/100 23/100 24/100 24/100 29/70 23%

HC 0.1 27/100 37/100 24/100 32/100 59/70 4%

D2B40 79/100 97/100 99/100 64/100 46/70 41%

Table 9. Targeted attacks on ResNet50 and detection, with Pref.

human preference

Attack
Feature Squeezing

JPEG [13] Pref.
2x2 11-3-4 5-bit

BIM4 30/100 91/100 100/100 51/100 46/70 27%

FS1 6/100 25/100 53/100 24/100 65/70 36%

SM50 0/100 4/100 10/100 1/100 49/70 21%

SM500 5/100 72/100 95/100 46/100 48/70 14%

SP1 2/100 39/100 53/100 4/100 40/70 27%

Latent 1/100 0/100 1/100 0/100 33/70 23%

Sparse 0/100 0/100 2/100 0/100 27/70 20%

HC 0.1 0/100 1/100 1/100 1/100 57/70 15%

D2B100 37/100 88/100 100/100 57/100 60/70 50%

(a) Real Image

(b) Difference on

Pixel Boundary

(c) Difference on

Deep Distribution

Bound

Figure 12. Differential Analysis. The first row denotes benign examples. The following two rows are pixel-wise differences between benign

inputs and their corresponding adversarial versions. The second row is from BIM and the third row is from ours. Both have very small

bounds. The differences are scaled up by a factor of 2e6 for the two respective rows for better display.

N. Differential Analysis - Understanding the Essence of D2B

In this experiment, we give D2B a very small internal bound, i.e., 5e-4% quantile change on the throttle plane of ResNet50.

As such, the pixels changes enabled by the bound indeed are so small that they essentially denote the input gradients induced



by our method. We also conduct a similar experiment for the pixel space BIM method (with approximately the same

ℓ∞ = 2.77e−05× 255) for reference. The results are presented in Figure 12, where the pixel differences between adversarial

example and their original versions are presented. We observe that the “gradients” in pixel space attacks are more prevalent

and uniform, whereas the “gradients” in our attack closely couple with the existing content features. Note that the experiment

cannot be done on feature attack and semantic attack as there is no way to enforce a small bound for those attacks.

O. Transferability of Generated Adversarial Examples

In this section, we study the transferability of adversarial examples generated by different attacks. We launch untargeted

attacks on ResNet152-Adv and targeted attacks on ResNet50. We use the same attack success criterion as in Section 4:

(1) targeted adversarial examples should induce the same target label when transferred to a second model; (2) untargeted

adversarial examples should exclude the true label from appearing in the top-5 predicted labels when transferred. We test

generated adversarial samples on 4 different models, including ResNet50’ (with the same structure but different parameters as

the previously used ResNet50), VGG19, MobileNet and DenseNet. The results can be found in Table 10 and Table 11. We

observe that our untargeted attack has higher human preference than other attacks with comparable transferability. For targeted

attacks, our method outperforms other methods in both transferability and human preference. Note that transferring targeted

attack is a challenging task and requires specific approaches (e.g., ensemble) to improve the transferability.

Table 10. Transferability of untargeted attacks. Adversarial examples are generated on ResNet152-Adv model.

Attack
Transfer to

Human Preference

ResNet50’ VGG19 DenseNet121 MobileNet-V1

PGD-4 50/100 60/100 46/100 61/100 30%

FS1 43/100 51/100 39/100 52/100 35%

HC0.1 22/100 23/100 29/100 24/100 4%

SM50 49/100 57/100 48/100 47/100 29%

SP2 59/100 63/100 60/100 64/100 16%

LAT 36/100 43/100 35/100 38/100 28%

D2B40 55/100 56/100 47/100 60/100 41%

D2B50 67/100 63/100 57/100 70/100 20%

Table 11. Transferability of targeted attacks. Adversarial examples are generated on ResNet50 model.

Attack
Transfer to

Human Preference

ResNet50’ VGG19 DenseNet121 MobileNet-V1

PGD-4 37/100 0/100 0/100 1/100 27%

FS1 17/100 2/100 0/100 1/100 36%

HC0.1 1/100 0/100 0/100 0/100 15%

Sparse 0/100 0/100 0/100 0/100 20%

SM50 2/100 0/100 0/100 0/100 21%

SM500 32/100 0/100 1/100 0/100 14%

SP2 44/100 0/100 2/100 1/100 9%

LAT 1/100 0/100 0/100 0/100 23%

D2B100 44/100 0/100 0/100 0/100 50%

P. Ethics Consideration

We have obtained IRB approval on our human study. We will release it upon publication. This paper demonstrates a new

aspect that a deep learning model can be attacked. It hence provides strong motivation and critical insights for the community

to develop stronger defense techniques and make deep learning applications more trustable.

Q. Adversarial Examples of Different Scales

We show the generated adversarial examples using D2B with different settings in Figure 13 and Figure 14. Figure 13

demonstrates samples of a targeted attack on ResNet50 and Figure 14 an untargeted attack on ResNet152-Adv. We can observe

that most of our adversarial examples are indistinguishable from real images (top row). For few cases such as the 3rd column

in the last row (with large quantile change), we observe the presence of a repeating pattern. We speculate this is because the

attack was only applied to the first a few representative throttle planes, which may not be as abstract as other deeper layers.

This effect can be alleviated by including more throttle planes when launching the attack.



D2B10
D2B20
D2B30
D2B40
D2B50

Real

BIM8

FS2

SM500

HC0.1

Sparse

Latent

SP2

Figure 13. Adversarial samples on ResNet50 from D2B of different scales and other Attacks

R. Typical Throttle Plane Distributions

We present some typical distributions from selected throttle planes in Figure 15 and Figure 16. Figure 15 shows distribution

density graphs of 4×4×1 slice (width×height×channel) of selected throttle planes for VGG16, and Figure 16 for ResNet152-



D2B10
D2B20
D2B30
D2B40
D2B50

Real

BIM8

FS2

SM500

HC0.1

Latent

SP2

Figure 14. D2B Adversarial samples on ResNet152-Adv from D2B of different scales and other Attacks

Adv. We observe that the planes from VGG16 resemble normal distributions more than the planes from ResNet152-Adv (e.g.,

Figure 15c and Figure 16c). This might explain why adversarial examples from the VGG16 reference model are relatively

more nature. We also observe that the first few rows and columns in Figure 15a and Figure 16a look less like a normal

distribution. This is due to the existence of zero padding in those layers. The padding operation makes the first a few neurons

around the border of a channel distinct from the inner neurons.



(a) Throttle Plane 1: After VGG16 conv1_2 (b) Throttle Plane 2: After VGG16 conv2_2

(c) Throttle Plane 3: After VGG16 conv3_3

Figure 15. Typical Distributions of Selected Throttle Planes from VGG16



(a) Throttle Plane 1: After the First Convolution (b) Throttle Plane 2: The last Layer of Group 1 Before ReLU

(c) Throttle Plane 3: The last Layer of Group 2 Before ReLU

Figure 16. Typical Distributions of Selected Throttle Planes from ResNet152-Adv


