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1. Pseudo-Labeling Schemes
How to generate pseudo-labels for unlabeled data based

on the model outputs is also an important question for
CMPL. Many pseudo-labeling strategies become possible
with the introduction of the auxiliary network. Besides the
one described in our method, we list some other options:
1) Self-First: Each network first checks whether its own
prediction is confident enough, and if it is not, then the
label is obtained from its sibling. 2) Opposite-First: Each
network instead prioritizes its companion over itself. 3)
Maximum: The most confident prediction from the two
networks is taken as the pseudo-label. 4) Average: The
predictions from the two networks are averaged before
deriving the pseudo-label.

Let the pseudo-label confidence produced by F and A
be lF and lA. The pseudo-label confidences for a video
ui are thus lF (ui) = pAi , lA(ui) = pFi . And now
the corresponding mathematical formulations of different
pseudo-labeling schemes are presented as following, where
ui is removed for clarity.

1. Self-First:

lF = 1(max(pF ) ≥ τ)pF + (1− 1(max(pF ) ≥ τ))pA,

lA = 1(max(pA) ≥ τ)pA + (1− 1(max(pA) ≥ τ))pF .

2. Opposite-First:

lF = 1(max(pA) ≥ τ)pA + (1− 1(max(pA) ≥ τ))pF ,

lA = 1(max(pF ) ≥ τ)pF + (1− 1(max(pF ) ≥ τ))pA.

3. Maximum:

lF = lA = 1(max(pF ) ≥ max(pA))pF+

(1− 1(max(pF ) ≥ max(pA)))pA.

4. Average:

lF = lA =
pF + pA

2
.

Table 1. Comparison across different pseudo-labeling schemes.
As there is no auxiliary network, FixMatch can only use the
pseudo-labels generated by itself.

Pseudo-Labeling Top-1

FixMatch 6.78

Self-Confident 10.80
Opposite-Confident 11.13
Maximum 11.85
Average 12.16

Cross 12.90

Experimental Results. Tab. 1 presents the results of
different pseudo-labeling schemes. The baseline strategy
(FixMatch [8]) performs the worst. Due to the lack of the
auxiliary networks, the unlabeled data mainly distinguish-
able beyond the representation of the primary backbone
rarely gets paired with confident pseudo labels since the
scores of those unseen videos are easily below the threshold.
After introducing the temporal information derived from
the auxiliary network, clear improvements are observed.
For the remaining strategies except the proposed cross-
model scheme, there is a chance that the primary network
will dominate the pseudo labeling decisions, leading to the
wrong decisions for unlabeled samples. In contrast, for our
cross-model strategy, each network always receives pseudo
labels from its companion and never from itself, and this is
shown to be more effective.

2. Comparison to Self-Supervised Methods

In this section, we compare CMPL with state-of-the-art
self-supervised learning approaches. We use UCF-101 as
the labeled data and Kinetics-400 as the unlabeled data.
A described in the main paper, CMPL jointly use labeled
and unlabeled data in a semi-supervised manner. As for
self-supervised learning methods, we follow the standard



Table 2. Comparison with other state-of-the-art self-supervised learning methods on UCF-101. We use UCF-101 as the labeled data
and Kinetics-400 as the unlabeled data. The other self-supervised methods are pretrained on Kinetics-400 and fine-tuned on UCF-101. Our
model are trained from scratch.

Method Architecture #Frames UCF-101 [9]

Random Init 3D-ResNet50 8 61.1
ImageNet Init 3D-ResNet50 8 86.2

MotionPred [12] C3D [10] 16 61.2
RotNet3D [6] 3D-ResNet18 16 62.9
ST-Puzzle [7] 3D-ResNet18 16 65.8
ClipOrder [16] R(2+1)D-18 [15]. - 72.4
DPC [3] 3D-ResNet34 - 75.7
AoT [14] T-CAM - 79.4
SpeedNet [1] I3D [2] 64 81.1
VTHCL [17] 3D-ResNet50 8 82.1
PacePrediction [13] S3D-G [11] 64 87.1
CoCLR [4] S3D-G [11] 32 87.6

Ours 3D-ResNet50 8 88.9

protocol to use unlabeled data in Kinetics-400 for pre-
training, followed by a fine-tuning on the labeled data in
UCF-101.

As shown in Tab. 2, in comparison to the CoCLR [4],
our model provides a performance gain of 1.3% only with
8 frames input, indicating the effectiveness of CMPL. It is
a very encouraging result, suggesting that semi-supervised
learning is a promising solution for action recognition with
limited labeled data. We hope that our result can provide
a strong baseline for comparison with more self-supervised
learning methods.

3. 3D-ResNet Network Structure
Tab. 3 shows the architecture of 3D-ResNet50. It inherits

the 2D-ResNet [5] and inflates the 2D kernel at conv1
across all stages. The other convolution blocks are still in
2D format, focusing on the spatial semantics. Moreover,
there exist no temporal downsampling layers, in order to
maintain long-temporal fidelity. Notably, we shrink the
width of 3D-ResNet to a factor of 1/4 to use the 3D-
ResNet50×1/4 as the default auxiliary pathway.

4. Effects of Sampling Schemes
As illustrated in Section 4.1 of the main paper, the

number of sampled videos is the same across different
categories. However, different from UCF-101, the distri-
bution of videos across different categories is not balanced
in Kinetics-400. We re-sample a new video subset under the
Kinetics-400 distribution, called ‘category-wise sampling
scheme’. To be specific, we first compute the number of
each category and next randomly sample the videos from
each category with the corresponding ratio and the total
number. Tab. 4 presents the results of different sampling

Table 3. 3D-ResNet50 Network Structure.The dimensions of
convolution kernels are denoted by {KT ×KH ×KW ,KC} for
temporal, height, width and channels sizes. The output size is in
{C×T ×S2} format denoting channel, temporal and spatial size.
We take input size of 3 × 8 × 2242 which utilizes 8 frames with
224 spatial resolution as an example.

Stage Block Output Size

input − 3× 8× 2242

conv1
5×7×7, 64

64× 8× 1122
stride 1, 2, 2

pool1
1×3×3, max

64× 8× 562
stride 1, 2, 2

res2

 3×1×1, 64
1×3×3, 64

1×1×1, 256

×3 256× 8× 562

res3

 3×1×1, 128
1×3×3, 128
1×1×1, 512

×4 512× 8× 282

res4

 3×1×1, 256
1×3×3, 256
1×1×1, 1024

×6 1024× 8× 142

res5

 3×1×1, 512
1×3×3, 512
1×1×1, 2048

×3 2048× 8× 72

schemes under the same setting of ablation study in Section
4.3 of the main paper. Even with the unbalanced distribu-
tion, CMPL obtains nearly the same performance with the
‘uniform sampling’ scheme, suggesting the robustness and
generality of our approach.



Table 4. Study on sampling Scheme.

Uniform(Default) Category-Wise
Top-1 12.90 12.68
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