Depth Estimation by Combining Binocular Stereo and Monocular
Structured-Light
(Supplementary Material)

Al. Implementation Details

We implement the models in PyTorch on two NVIDIA
RTX 2080Ti GPU. We pre-train the models on FlyingTh-
ings3D cleanpass dataset for 65k iterations, then finetune
the model by mixing the FlyingThings3D dataset and IRS
dataset for another 170k iterations. The crop size of the
training dataset is set to 512x256. In addition, following
CRL [3], the stereo pairs with more than 25% of their dis-
parity values larger than 300 are removed.

All modules are initialized from scratch with random
weights. During training, we use the AdamW optimizer [2]
with one-cycle learning rate scheduler [4]. For PSMNet, the
batch size is set to 6, while the maximum learning rate is set
to le-3, and mixed precision is used for training to avoid out
Of memory (OOM). We train RAFT with 12 disparity-field
updates, and 20 for evaluation. The batch size is set to 16,
while the maximum learning rate is set to 4e-4.

We perform photometric augmentation by randomly
perturbing brightness, contrast, saturation, and Gaussian
blur. Each augmentation module has a 50% chance
performed to each of the images independently. We also
perform spatial augmentation by randomly rescaling in the
range [0.53,1], and y-disparity augmentation [5], both with
probability of 50%. In order to make the proposed system
compatible with both indoor and outdoor scenes, there
is 50% chance of using external guidance for the stereo
networks during training.

Calibration of the MSL system: In the original Fig. 3,
we assume the reference plane is perpendicular to the axis
of the camera. Under this assumption, Eq. (1) holds. In
practice, we fix the 3D camera with a clamp and adjust the
clamp so that its surface is parallel to a white wall with a
laser rangefinder.

A2. Supplementary Results

In Figure 1, the point clouds of the person in the original
Fig. 8 are shown.

In Figure 2, we show two IR images Kinect in indoor
scene and outdoor scene respectively. In outdoor scene,
the projected speckles are seriously interfered by sun light,
which leads to unstable depth estimation.

In Figure 3, we show the qualitative comparison between
the proposed fusion method and the passive stereo method.
Obviously, the proposed method can obtain higher quality
disparity map.

In Figure 4, the results of MSG [!] (a depth completion
method) are also shown (with RGB and MSL depth as in-
put).

In experiment, we find that increasing the number of
guidance points does not improve the accuracy, as shown
in Table 1. However, if the guidance is sampled from the
ground truth disparity maps, the smaller errors can be ob-
tained, as shown in Table 2.

More qualitative comparisons in outdoor scenes are
shown in Figure 6.
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Figure 1. Point-cloud visualization. From left to right: our system, Intel D435, Kinect V1 and Kinect Azure (TOF camera). The distance
from the target to the camera is about 65cm

(a) Indoor (b) Outdoor

Figure 2. IR images of Kinect in indoor and outdoor scenes. In outdoor scene, the projected speckles are seriously interfered by sun light,
which leads to unstable depth estimation.
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Figure 3. Qualitative comparison of our fusion method and the passive stereo method. The first column shows the left images, the second
column shows the right images, and the last column shows the disparity maps. The first row shows the results of our fusion method
(RAFT-OM-G is used), and the second row shows the results of the passive stereo method (RAFT-O is used).

Sampling rate (%) | EPE | Bad0.5 (%) | Badl.0 (%) | Bad2.0 (%)
10 0.811 45.13 16.08 3.59
20 0.856 46.75 16.18 3.77
30 0.836 46.65 15.91 3.62
50 0.865 47.89 17.33 3.86

Table 1. Errors of RAFT-OM-G with different sampling rate of guidance pixels, where the guidance is sampled from the depth maps
generated by the monocular structured light subsystem. The same sampling rate is used for both training and testing of the network.

Sampling rate (%) | EPE | Bad0.5 (%) | Badl.0 (%) | Bad2.0 (%)
10 0.448 12.94 4.94 2.00
20 0.425 13.06 4.89 1.88
30 0.413 13.25 4.97 1.87
50 0.406 12.89 4.90 1.79

Table 2. Errors of RAFT-OM-G with different sampling rate of guidance pixels, where the guidance is sampled from the ground truth.
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Figure 4. Comparison with MSG [1].
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Figure 5. Human segmentation using depth information.
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Figure 6. Qualitative comparison in outdoor scenes. Note that, the results here and in Fig. 1 of our system are generated with the same
network model (RAFT-OM-G).



