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1. Outline

As part of supplementary material for our paper titled
“FedCorr: Multi-Stage Federated Learning for Label Noise
Correction”, we provide further details, organized into the
following sections:

• Sec. 2 introduces the implementation details for our
method and baselines.

• Sec. 3 provides further details on our experiments.
– Sec. 3.1 gives additional experiment results on

CIFAR-100 with a non-IID data partition.
– Sec. 3.2 shows that FedCorr is model-agnostic,

via a comparison of the test accuracies and the
distributions of cumulative LID scores, using dif-
ferent model architectures.

– Sec. 3.3 gives a comparison of the communica-
tion efficiency of different methods.

– Sec. 3.4 explains why cumulative LID scores are
preferred over LID scores for identifying noisy
clients.

– Sec. 3.5 demonstrates the effectiveness of both
the label noise identification and the label cor-
rection process in FedCorr.

– Sec. 3.6 gives further details on the ablation study
results for FedCorr.

– Sec. 3.7 provides further intuition on the non-IID
data settings used in our experiments, via explicit
illustrations of the corresponding non-IID data
partitions on CIFAR-10, over 100 clients.

• Sec. 4 discusses the potential negative societal impact
of FedCorr.

2. Implementation details

All experiments were implemented using Pytorch.
Among the baselines, we reimplemented FedAvg [8],
FedProx [7], JointOpt [10], DivideMix [6] and
PoC [2], and we used the official implementations of

*Equal contributions. † Corresponding author.

Hyperparameters CIFAR-10 CIFAR-100 Clothing1M

# of iterations in stage 1, T1 5 10 2
# of rounds in stage 2, T2 500 450 50
# of rounds in stage 3, T3 450 450 50
Confidence threshold, θ 0.5 0.5 0.9
Relabel ratio, π 0.5 0.5 0.8
Learning rate 0.03 0.01 0.001

Table 1. Hyperparameters of FedCorr on different datasets.

FedDyn [1] and ARFL [3]. For RoFL1 and Median2, we
used their unofficial implementations. For all methods, we
use an SGD local optimizer with a momentum of 0.5 and no
weight decay, with a batch size of 10 for CIFAR-10/100 and
16 for Clothing1M. Note that at each noise level, we used
the same training hyperparameters for both IID and non-IID
data partitions.

For the implementation of each federated learning (FL)
method, we define its total communication cost to be the
cumulative number of clients that participate in training.
For example, if a client participates in 10 communication
rounds, then that client would contribute 10 to the total com-
munication cost. For every method except JointOpt and
DivideMix, we always reimplement the method using 5
local epochs per communication round, and the same to-
tal communication cost for each dataset, which corresponds
to 1000 rounds of FedAvg for CIFAR-10/100 with frac-
tion 0.1, and corresponds to 200 rounds of FedAvg for
Clothing1M with fraction 0.02. Settings for JointOpt
and DivideMix are discussed below.

In the rest of this section, we give full details on all re-
maining hyperparameters used for each method. For base-
line methods, we also provide brief descriptions of their
main underlying ideas.

• FedCorr. We fixed k = 20 for LID estimation,
α = 1 for mixup, and β = 5 for the proximal reg-
ularization term in all reported experiments. All re-

1https://github.com/jangsoohyuk/Robust-Federated-Learning-with-
Noisy-Labels

2https://github.com/fushuhao6/Attack-Resistant-Federated-Learning
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maining hyperparameters can be found in Tab. 1. Note
that the total communication cost for FedCorr is the
same as for other baselines. Take CIFAR-10 for ex-
ample: In each iteration of the pre-processing stage of
FedCorr, every client participates exactly once. In
contrast, in each communication round of our other
baselines, only a fraction of 0.1 of the clients would
participate. Hence, one iteration in the pre-processing
stage of FedCorr has 10 times the total communi-
cation cost of one communication round of the other
baselines. For the latter two stages of FedCorr, we
used the usual 0.1 as our fraction. Hence the total
communication cost of the entire implementation of
FedCorr equals 100T1+10T2+10T3 = 10000; this
is the same total communication cost for implementing
FedAvg over 1000 communication rounds with frac-
tion 0.1.

• JointOpt [10] is one of the state-of-the-art central-
ized methods for tackling label noise, which alter-
nately updates network parameters and corrects labels
using the model prediction vectors. It introduced αJo

and βJo as two additional hyperparameters. In the cen-
tralized setting, we used the hyperparameters given in
Tab. 2. In particular, we considered a total of seven
noise settings, which we have divided into two groups:
low noise levels (first four settings) and high noise lev-
els (last three settings). Within each group, we used
the same hyperparameters. Note that the hyperparam-
eters are not exactly the same as those given in [10],
as we used different architectures and different frame-
works to generate synthetic label noise. In the fed-
erated setting, we used αJo = 1.2, βJo = 0.8 and
a learning rate of 0.01 for CIFAR-10/100. To boost
performance, we used a warm-up process for CIFAR-
10/100: We first trained using FedAvg over 20 com-
munication rounds with 5 local epochs per communi-
cation round, after which we started using JointOpt
for local training over 80 communication rounds with
20 local epochs per communication round. For Cloth-
ing1M, we used αJo = 1.2, βJo = 0.8, and a learn-
ing rate of 0.001. As we used a ResNet-50 that is
already pretrained on ImageNet, no warm-up process
was used for our Clothing1M experiments. We trained
using JointOpt over 40 communication rounds with
10 local epochs per round.

• DivideMix [6] is another state-of-the-art central-
ized method, which dynamically divides the training
data into labeled (clean) and unlabeled (noisy) data,
and trains the model in a semi-supervised manner.
For CIFAR-10/100, we used the same two groups of
noise settings, as described in the above configura-
tion for JointOpt. The only hyperparameter we
tuned is λDiv, which is a hyperparameter specific to

(ρ, τ) αJo βJo Learning rate

Low noise levels 1.2 1.5 0.1
(0.0, 0.0), (0.4, 0.0), (0.4, 0.5), (0.6, 0.0)

High noise levels 1.2 0.8 0.2
(0.6, 0.5), (0.8, 0.0), (0.8, 0.5)

Table 2. Hyperparameters of JointOpt in the centralized setting
on CIFAR-10/100.

DivideMix. For low noise levels, we used λDiv = 0
(resp. λDiv = 25) for CIFAR-10 (resp. CIFAR-
100). For high noise levels, we used λDiv = 25
(resp. λDiv = 150) for CIFAR-10 (resp. CIFAR-100).
For all other hyperparameters for CIFAR-10/100, we
used the values given in [6]. For Clothing1M, we
use λDiv = 25 and a learning rate of 0.01; for all
other hyperparameters, we used the values given in
[6]. We used the same warm-up process for CIFAR-
10/100, and we used the same number of commu-
nication rounds and number of local epochs for all
datasets, as described above in our configuration for
JointOpt.

• FedAvg [8] is the first algorithm that introduced the
idea of federated learning. We used a learning rate of
0.03, 0.01 and 0.003 for CIFAR-10, CIFAR-100 and
Clothing1M, respectively.

• FedProx [7] was proposed to tackle data heterogene-
ity among clients by adding a fixed proximal term with
coefficient µprox to every local loss function. We used
µprox = 1 for all experiments, and a learning rate of
0.01 and 0.003 for CIFAR-10/100 and Clothing1M, re-
spectively.

• RoFL [11] is, to the best of our knowledge, the only
method that is designed for label correction in FL. It is
based on the idea of exchanging feature centroids be-
tween the server and clients, and it introduced Tpl as
an additional hyperparameter to control label correc-
tion. We set Tpl to 100, 400 and 10 for CIFAR-10,
CIFAR-100 and Clothing1M, respectively. All other
hyperparameters are set to the same values as given
in [11].

• ARFL [3] is a robust aggregation algorithm that resists
abnormal attacks via residual-based reweighting, using
two hyperparameters λar and threshold δar. We used
λar = 2 and δar = 0.1 for all experiments. We used a
learning rate of 0.01 and 0.003 for CIFAR-10/100 and
Clothing1M, respectively.

• FedDyn [1] proposed a dynamic regularizer, with co-
efficient αDyn, for local optimization in each commu-
nication round, so as to tackle the inconsistency be-
tween the local and global empirical loss. We used
αDyn = 0.01, a learning rate of 0.1 with a decay of
0.998 for all the experiments.



• Median [12] is an aggregation method for robust dis-
tributed learning, whereby the notion of “average” in
FedAvg is changed from “mean” to “median”. For all
experiments, we used a learning rate of 0.01; all other
hyperparameters are the same as given in FedAvg.

• Poc [2] is a client selection algorithm that is biased
towards clients with higher local losses within a given
client pool. We used a learning rate of 0.01 and a client
pool size of d = 30 for all experiments.

3. Details on experiment results

3.1. CIFAR-100 with non-IID data partition

In terms of robustness to the discrepancies in both lo-
cal label quality and local data statistics, FedCorr signif-
icantly outperforms the baselines. In the main paper, we
have reported the outperformance of FedCorr on CIFAR-
100 with IID data partition. To further show the outperfor-
mance on non-IID data partitions, we also conducted exper-
iments on CIFAR-100 with noise model (ρ, τ) = (0.4, 0.5)
and non-IID hyperparameter (p, αDir) = (0.7, 10); here,
we report our results in Tab. 3. We observe that FedCorr
achieves an improvement in best test accuracy of at least 7%
over our baselines.

Method\(p, αDir) (0.7, 10)

FedAvg 64.75±1.75
FedProx 65.72±1.30
RoFL 59.31±4.14
ARFL 48.03±4.39
JointOpt 59.84±1.99
DivideMix 39.76±1.18
Ours 72.73±1.02

Table 3. Average (5 trials) and standard deviation of the best test
accuracies of different methods on CIFAR-100 with non-IID data
partition. The noise setting used is (ρ, τ) = (0.4, 0).

3.2. Comparison of different architectures

To demonstrate that our proposed FedCorr is model-
agnostic, especially with respect to the noisy client identi-
fication scheme via cumulative LID scores, we conducted
experiments on CIFAR-10 with IID data partition using
different architectures: ResNet-18 [4], VGG-11 [9] and
LeNet-5 [5]. Tab. 4 shows the best test accuracies of each
model trained on CIFAR-10 with various levels of synthetic
noise. For experiments on VGG-11, we used hyperparam-
eters with the same values as used in the experiments on
ResNet-18. For LeNet-5, we only tuned the learning rate
and fixed it at 0.003 in all experiments. Fig. 1 shows a fur-
ther comparison between different architectures in terms of

the distribution of the cumulative LID scores and the cor-
responding separations of the clients via Gaussian Mixture
Models.

3.3. Comparison of communication efficiency

In this subsection, we discuss the communication effi-
ciency of different methods. Here, given any implementa-
tion of an FL method, and any desired target accuracy ζ, we
define its targeted communication cost for ζ test accuracy
to be the lowest total communication cost required (in the
experiments) to reach the target ζ test accuracy. Informally,
the lower the targeted communication cost, the higher the
communication efficiency.

Tab. 5 and Tab. 6 show the comparison of the com-
munication efficiency on CIFAR-10, in terms of the tar-
geted communication cost at test accuracies ζ = 80% and
ζ = 65%, respectively. Tab. 7 shows the comparison on
CIFAR-100, in terms of the targeted communication cost at
test accuracy ζ = 50%. As our results show, FedCorr
achieves improvements in communication efficiency, by a
factor of at least 1.9 on CIFAR-10, and at least 1.3 on
CIFAR-100.

3.4. Distribution of cumulative LID scores

Fig. 2 shows the comparison between the distribution of
the LID scores and the distribution of the cumulative LID
scores, after each iteration in the pre-processing stage. The
LID scores of clean clients and noisy clients can be well-
separated after the second iteration and the third iteration.
This is also true for the cumulative LID scores. However,
after the fourth iteration, the LID scores of noisy clients and
clean clients start overlapping, while in contrast, the cumu-
lative LID scores of noisy clients and clean clients remain
well-separated. As already discussed in the main paper, cu-
mulative LID scores have a stronger linear relation with lo-
cal noise levels, as compared to LID scores. Hence, the cu-
mulative LID score is a more robust metric for identifying
noisy clients.

3.5. Evaluation of label noise identification and label
correction

Fig. 3 demonstrates the effectiveness of the label noise
identification and correction process in the pre-processing
stage on CIFAR-10. Note that in Fig. 3, we used the noise
setting (ρ, τ) = (0.6, 0.5), which means on average 60%
of the clients are randomly selected for the addition of syn-
thetic noise to their local datasets before training, whereby
the local noise level for each selected client is at least 0.5.
The top plot in Fig. 3 shows the estimated noise levels,
in comparison with the ground-truth noise levels (before
training and after stage 1), across all 100 clients. In par-
ticular, the huge gap between the ground-truth noise lev-
els before training (blue dotted line) and after stage 1 (or-



Method
Best Test Accuracy (%) ± Standard Deviation (%)

ρ = 0.0 ρ = 0.4 ρ = 0.6 ρ = 0.8

τ = 0.0 τ = 0.0 τ = 0.5 τ = 0.0 τ = 0.5 τ = 0.0 τ = 0.5

ResNet-18 93.82±0.41 94.01±0.22 94.15±0.18 92.93±0.25 92.50±0.28 91.52±0.50 90.59±0.70
VGG-11 88.96±0.84 87.93±0.41 87.53±0.40 84.78±1.68 84.82±0.79 83.34±0.42 80.82±2.62
LeNet-5 72.03±0.35 70.47±0.86 70.02±1.39 69.09±0.16 67.48±0.54 67.49±0.74 65.16±0.53

Table 4. Comparison of the average (5 trials) and standard deviation of best test accuracies, when trained on CIFAR-10 with IID data
partition using different architectures.

Figure 1. Comparison of cumulative LID score distribution after 5 iterations in pre-processing stage among different architectures. The
experiments were conducted on CIFAR-10 with IID data partition and noise setting (ρ, τ) = (0.6, 0.5).

Method ρ = 0.0 ρ = 0.4 ρ = 0.6 ρ = 0.8

τ = 0.0 τ = 0.0 τ = 0.5 τ = 0.0 τ = 0.5 τ = 0.0 τ = 0.5

Ours 150 210 230 230 330 360 510

FedAvg 370(2.6×) 450(2.1×) 470(2.0×) 550(2.4×) 930(2.8×) 810(2.3×) -
FedProx 690(4.9×) 1050(5.0×) 1190(5.2×) 1230(5.3×) 1600(4.8×) 1730(4.8×) 4640(9.1×)
RoFL 990(7.1×) 1390(6.6×) 1580(6.9×) 1900(8.3×) 4200(12.7×) 2080(5.8×) -
ARFL 290(2.1×) 740(3.5×) 1180(5.1×) - - - -
JointOpt 330(2.4×) 420(2.0×) 760(3.3×) 550(2.4×) - - -
DivideMix - - - - - - -

Table 5. A comparison of communication efficiency for different methods on CIFAR-10 with IID data partition, in terms of the targeted
communication cost at ζ = 80% test accuracy. Values in brackets represent the ratios of the targeted communication costs as compared
to our method FedCorr. Note that the test accuracies are evaluated after each communication round. In the case of methods and noise
settings for which the target test accuracy ζ is not reached, we indicate ‘-’.

ange line) represents the effectiveness of our label correc-
tion process, while the small gap between the estimated
noise levels (green line) and the ground-truth noise levels
after stage 1 (orange line) reflects the effectiveness of our
local noise level estimation. Note that for clean clients (with
zero ground-truth noise levels before training), FedCorr is
able to estimate their noise levels to be exactly zero in most

cases. Consequently, no additional label noise is introduced
to these identified clean clients in our label correction pro-
cess.

The bottom plot in Fig. 3 shows the separation results
between noisy and clean samples (via a Gaussian Mixture
Model) for each identified noisy client, in terms of true/false
positives/negatives.In particular, the small numbers of false



Method ρ = 0.0 ρ = 0.4 ρ = 0.6 ρ = 0.8

τ = 0.0 τ = 0.0 τ = 0.5 τ = 0.0 τ = 0.5 τ = 0.0 τ = 0.5

Ours 50 60 90 70 110 90 190

FedAvg 160(3.2×) 200(3.3×) 210(2.3×) 230(3.3×) 300(2.7×) 270(3.0×) 470(2.5×)
FedProx 300(6.0×) 430(7.2×) 500(5.6×) 480(6.9×) 690(6.3×) 670(7.4×) 1840(9.7×)
RoFL 350(7.0×) 420(7.0×) 470(5.2×) 440(6.3×) 670(6.1×) 490(5.4×) 1710(9.0×)
ARFL 120(2.4×) 230(3.8×) 170(1.9×) 240(3.4×) 390(3.5×) 270(3.0×) -
JointOpt 160(3.2×) 200(3.3×) 220(2.4×) 220(3.1×) 250(2.3×) 250(2.8×) 860(4.5×)
DivideMix 480(9.6×) 560(9.3×) 580(6.4×) 590(8.4×) 690(6.3×) 930(10.3×) 970(5.1×)

Table 6. A comparison of communication efficiency for different methods on CIFAR-10 with IID data partition, in terms of the targeted
communication cost at ζ = 65% test accuracy. Values in brackets represent the ratios of the targeted communication costs as compared
to our method FedCorr. Note that the test accuracies are evaluated after each communication round. Note that the test accuracies are
evaluated after each communication round. In the case of methods and noise settings for which the target test accuracy ζ is not reached,
we indicate ‘-’.

Method ρ = 0.0 ρ = 0.4 ρ = 0.6 ρ = 0.8
τ = 0.0 τ = 0.5 τ = 0.5 τ = 0.5

Ours 95 140 295 505

FedAvg 135(1.4×) 210(1.5×) 420(1.4×) -
FedProx 465(4.9×) 705(5.0×) 1110(3.8×) 1885(3.7×)
RoFL 380(4.0×) 2350(16.8×) 4740(16.1×) -
ARFL 150(1.6×) 265(1.9×) - -
JointOpt 125(1.3×) 210(1.5×) - -
DivideMix - - - -

Table 7. A comparison of communication efficiency for different
methods on CIFAR-100 with IID data partition, in terms of the
targeted communication cost at ζ = 50% test accuracy. Values in
brackets represent the ratios of the targeted communication costs
as compared to our method FedCorr. Note that the test accu-
racies are evaluated after each communication round. Note that
the test accuracies are evaluated after each communication round.
In the case of methods and noise settings for which the target test
accuracy ζ is not reached, we indicate ‘-’.

positives across all identified noisy clients imply the effec-
tiveness of FedCorr in identifying noisy samples.

To further illustrate the effectiveness of the label correc-
tion process, we compared the confusion matrices of the
given labels before training, the corrected labels after the
pre-processing stage, and the corrected labels after the fine-
tuning stage. Fig. 4 depicts the confusion matrices for the
first 5 clients, in the experiments conducted on CIFAR-10
with IID data partition and noise setting (ρ, τ) = (0.6, 0.5).
For all five selected clients, the ground-truth noise levels af-
ter label correction are close to 0. Notice also that for client
2, whose dataset initially has no noisy labels, only a min-
imal amount of label noise is introduced during the label
correction process.

3.6. Additional ablation study results

In Fig. 5, we show the effects of the components of
FedCorr on test accuracies during training.In particular,
note that without the finetuning stage, the total communica-
tion cost would be 5000. Hence in Fig. 5, the curve plotted
for FedCorr without finetuning ends at the 5000 commu-
nication cost mark, which is to the left of the second red
dotted line (5500 communication cost). As we mentioned
in the main paper, fraction scheduling plays the most sig-
nificant role in FedCorr. In addition, the label correction
process would significantly improve training stability, espe-
cially in the usual training stage.

3.7. Illustration of non-IID data partitions on
CIFAR-10

As reported in the main paper, we used 3 dif-
ferent non-IID local data settings ((p, αDir) =
(0.7, 10), (0.7, 1), (0.3, 10)) for our experiment involving
non-IID data partitions. In Fig. 6, we illustrate the detailed
local class distributions and local dataset sizes for these
three non-IID data settings on CIFAR-10, over 100 clients.

4. Potential negative impact: the issue of
freeloaders

In real-world FL implementations, there is the implicit
assumption that clients are collaborative and jointly collab-
orate to train a global model. Although FedCorr allows
for a robust training of a global model even when some
clients have label noise, this also includes the case when
a client is a “freeloader”, where the client’s local dataset
has completely random label noise (e.g. randomly assign-
ing labels to an unlabeled dataset, without any actual non-
trivial annotation effort). By participating in the FedCorr
FL framework, such a “freeloader” would effectively use



Figure 2. Distributions of the LID/cumulative LID scores during all 5 iterations of the pre-processing stage of FedCorr, evaluated on
CIFAR-10 with IID data partition and noise setting (ρ, τ) = (0.6, 0.5), over 100 clients.



Figure 3. An evaluation of the label noise identification and label correction process after 5 iterations in the pre-processing stage, conducted
on CIFAR-10 with IID data partition and noise setting (ρ, τ) = (0.6, 0.5). Top: Evaluation of noise level estimation and label correction
process in the pre-processing stage. Bottom: Evaluation of label noise identification.

FedCorr as the actual annotation process, whereby iden-
tified noisy labels are corrected. Hence, this would be un-
fair to clients that have performed annotation on their local
datasets prior to participating in FedCorr.
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