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A. More Comparisons

We present more comprehensive comparisons (as a sup-
plement of Table 1 in the main paper) with all the possible
combinations of flow estimation approaches in Table A. Our
Transformer and softmax-based method is consistently bet-
ter and has less parameters than other variants.

B. Computational Complexity

We analyze the computational complexities of core com-
ponents in our framework below.

Global Matching. In our global matching formulation,
we build a 4D correlation matrix H × W × H × W to
model all pair-wise similarities between two features (with
size H × W , 1/8 of the original image resolution). There
exists an equivalent implementation should it become a bot-
tleneck for high-resolution images. Note that the pixels in
the first feature are independent and thus their flow predic-
tions can be computed sequentially. Specifically, we can se-
quentially compute K ×K correlation matrices (each with
size H/K × W/K × H × W ), and finally merge the re-
sults for all pixels. Such a sequential implementation can
save the memory consumption while having little influence
on the overall inference time (see Table B), since the global
matching operation only needs to compute once, and it’s not
a significant speed bottleneck in the full framework.

#splits 1× 1 2× 2 4× 4 8× 8

Time (ms) 52.57 52.64 52.90 59.45

Table B. Inference time vs. number of splits for sequential
global matching implementation. The input image resolution
is 448× 1024, and the features are downsampled by 8×.

We note that our alternative sequential implementation
is not applicable for previous cost volume and convolution-
based approaches (e.g., RAFT [3]), since the cost volume
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is used as an intermediate component for subsequent re-
gression with convolutions, where all pixels in the spatial
dimension are tightly coupled.

Transformer. We use shifted local window attention [1]
in the Transformer implementation, where each local win-
dow size is 1/16 of the original image resolution by default.
The computational cost is usually acceptable for regular im-
age resolutions (e.g., 448× 1024). Note that we can always
switch to smaller windows size (e.g., 1/32, see Table 2b of
the main paper) should it become a bottleneck.

Flow Propagation. Our default flow propagation
scheme computes a global self-attention. The sequential
implementation in global matching can also be adopted
here. It’s also possible to compute a local window self-
attention only for less memory consumption by trading
some accuracy in large motion (Table C). Such a local at-
tention operation can be implemented efficiently with Py-
Torch’s unfold function.

self-attn.
Sintel (train, final)

EPE s0−10 s10−40 s40+

global 3.13 0.80 3.87 18.04
local 3× 3 3.31 0.79 3.75 20.22
local 5× 5 3.21 0.75 3.66 19.69

Table C. Global vs. local self-attention for flow propagation.

Refinement. Although the feature resolution of our re-
finement architecture is higher (1/4), it is not a significant
bottleneck since smaller local window (1/32 of the original
image resolution) attention is used in the Transformer and
matching is performed within a local window.

Overall, our GMFlow framework is general and flexible,
and many concrete implementations are possible to meet
specific needs.

C. More Visual Results

Flow Propagation. Our flow propagation scheme with
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Method feature
enhancement

flow
prediction #convs

Sintel (train, clean) Sintel (train, final) Param
(M)all matched unmatched all matched unmatched

variants

- cost + conv 14 3.32 1.56 22.34 4.93 2.82 27.73 4.64
Transformer cost + conv 2 3.41 2.40 14.32 4.57 3.27 18.67 4.95
Transformer cost + conv 14 2.04 1.09 12.34 3.37 2.03 17.80 7.79

conv softmax 14 6.36 3.22 40.30 8.00 4.80 42.58 5.12

GMFlow (w/o prop.) Transformer softmax 0 2.28 1.06 15.54 3.44 1.95 19.50 4.20
GMFlow (w/ prop.) Transformer softmax 0 1.89 1.10 10.39 3.13 1.98 15.52 4.23

Table A. Comparisons on different variants of flow estimation approaches. Although the Transformer can also be used for feature
enhancement in the cost volume and convolution-based approach (cost + conv), its performance heavily relies on a deep convolutional
regressor (e.g., 14 layers to catch up). In contrast, our softmax-based method is parameter-free (4.20M vs. 7.79M). The flow propagation
(prop.) layer further improves ours performance in unmatched regions, while only introducing additional 0.03M parameters. Replacing
the Transformer with convolutions for feature enhancement leads to significantly large performance drop, since convolutions are not able
to model the mutual relationship between two features.

self-attention is quite effective for handling occluded and
out-of-boundary pixels, as can be seen from Fig. A.

Prediction on DAVIS dataset. We test our pre-trained
Sintel model on the DAVIS [2] dataset, the results on di-
verse scenes are shown in Fig. B.

D. More Implementation Details
Network Architectures. The Transformer feature di-

mension is 128, and the intermediate feed-forward network
expands the dimension by 4×. We only use a single head in
all the attention computations, since we observe that multi-
head attention slows down the speed without bringing ob-
vious performance gains. Our refinement architecture uses
exactly the same Transformer for feature enhancement, ex-
cept that the attentions are performed within smaller local
windows. The self-attention layer in the flow propagation
step is also shared for 1/8 and 1/4 resolutions, where we
perform global attention at 1/8 resolution and local 3 × 3
window attention at 1/4 resolution.

Training Details. Our data augmentation strategy
mostly follows RAFT [3] except that we didn’t use occlu-
sion augmentation, since no obvious improvement is ob-
served in our experiments. During training, we perform ran-
dom cropping following previous works. The crop size for
FlyingChairs is 384 × 512, FlyingThings3D is 384 × 768,
Sintel is 320×896 and KITTI is 320×1152. Our framework
without refinement is trained on 4 V100 (16GB) GPUs.
The full framework with refinement is trained on 4 A100
(40GB) GPUs. We are also able to reproduce the results on
4 V100 (16GB) GPUs by halving the batch size and dou-
bling the training iterations.
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Figure A. Our flow propagation (prop.) scheme significantly improves the performance of occluded and out-of-boundary pixels.
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Figure B. Visual results on DAVIS dataset.
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