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1. Using a deeper network architecture for the decoder
The decoder of our proposed VAE plays a vital role in our framework as it maps the latent space of the VAE and the

semantic embedding to the visual feature embedding space. We use a network with two fully-connected (FC) layers for the
decoder in our main setting. We experiment with a deeper network where we add an FC layer with 4096 hidden units and a
LeakyReLU [5] layer to the decoder. Table 1 summarizes the results. Using a deeper network degrades the performance of
our model under both 1-shot and 5-shot settings for both miniImageNet [10] and tieredImageNet [12].

miniImageNet tieredImageNet
Decoder 1-shot 5-shot 1-shot 5-shot
2-FC Layers (Main paper) 72.79 ± 0.19 80.70 ± 0.16 74.21 ± 0.24 84.17 ± 0.18
3-FC Layers 71.68 ± 0.20 80.32 ± 0.16 73.84 ± 0.24 84.05 ± 0.25

Table 1. Few-shot classification performance of our method using different network architecture for the decoder. In our main setting,
we use as our decoder a network with two fully-connected (FC) layers. “3-FC Layers” denotes the setting where we add an FC layer with
4096 hidden units and a LeakyReLU layer to the decoder. The performance degrades for both 1-shot and 5-shot settings with a deeper
network.

2. Sample visualization
In Figure 1, we provide additional visualization of some representative samples and non-representative samples based on

the representativeness probability computed via our method. The samples on the left panel are images with high probabilities.
These images mostly contain the main object of the category and are easy to recognize. On the contrary, the samples on the
right panel are those with small probabilities. They contain various class-unrelated objects and can lead to noisy features for
constructing class prototypes.

3. Analysis of base class prototypes with the proposed sample selection method
Our feature selection method filters out non-representative samples from the base classes before training our VAE model.

As shown in the main paper - Figure 3, our method performs better as the representativeness threshold increases. A higher
threshold means we select samples that are more representative, resulting in a less amount of training data points. The second
column of Table 2 shows the percentages of selected samples via our method for 10 classes of the miniImageNet dataset.
Here we use a common threshold of 0.9 for all classes. Note that the average number of available training data for each class
is 600. Our method achieves state-of-the-art few-shot classification performance when using only a small fraction of these
training data. For example, we only use 42 images from class “Wok” and 91 from class “Jellyfish” to train our VAE model.

We observe a correlation between the numbers of selected samples and the distances between the estimated prototypes
and the ground truth prototypes of the base classes. We first estimate a ground truth prototype for each base class using all
available features. The prototype is computed as the mean of all features. We then train a baseline VAE model using all
available training data from the base classes to compare with our model trained using only the representative data. For each
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Figure 1. Examples of representative samples (left) and non-representative samples (right). We visualize 5 images with high proba-
bilities and 5 images with small probabilities computed via our proposed method for 8 classes from tieredImageNet dataset.

class, we obtain two prototypes using the generated features from the baseline model and our VAE model. Dall-data denotes
the distances between the prototypes estimated using the baseline model and the ground truth prototypes. Dselected-data denotes
the distances for our proposed model. As can be seen from the last column of Table 2, our VAE model trained with only
representative samples approximates better the ground truth prototypes. Moreover, the improvements are more pronounced
for classes with small amounts of training samples.

4. 1-shot classification accuracy with different support images
We observe that performance of few-shot learning methods heavily depends on the representativeness of the support

samples. For example, Figure 2 shows the 5-way 1-shot accuracy of the Meta-Baseline method [3] and our method. Here we
fix the 5 classes used for evaluation and experiment with 5 different support images for one of the 5 classes. These support
images have different L2 distances to the mean feature of the class (i.e., ground truth prototype), ranging from 0.5 to 0.7. A
smaller value means the support feature is more representative. As can be seen, the performance of both Meta-Baseline and
our method decreases dramatically when the representativeness of the support sample decreases.
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Class name % selected data Dall-data → Dselected-data(↓ improvement)
Wok 7.0% 0.68→ 0.51 (↓ 0.17)
Parallel bars 4.3% 0.67→ 0.52 (↓ 0.15)
Green Mamba 6.7% 0.68→ 0.54 (↓ 0.14)
Bolete 6.0% 0.61→ 0.50 (↓ 0.11)
Boxer 5.8% 0.76→ 0.64 (↓ 0.12)
Jellyfish 15.2% 0.66→ 0.62 (↓ 0.04)
Dugong 15.7% 0.69→ 0.64 (↓ 0.05)
Spider web 17.3% 0.64→ 0.59 (↓ 0.05)
Snorkel 13.7% 0.68→ 0.64 (↓ 0.04)
Hair Slide 13.5% 0.50→ 0.44 (↓ 0.06)

Table 2. Percentages of representative samples. We show the percentages of representative samples for 10 classes of the tieredImageNet
dataset, selected via our sample selection method. The VAE model trained only with these representative data estimates better the ground
truth prototypes of the base classes.Dall-data denotes the distances between the prototypes estimated using the VAE model trained with all
data and the ground truth prototypes. Dselected-data denotes the distances between the prototypes estimated using the VAE model trained with
only the selected data and the ground truth prototypes.

Figure 2. 1-shot, 5-way classification accuracy with different support images. FSL methods heavily depend on the representativeness
of the support samples. The figure shows the 1-shot, 5-way accuracy of the Meta-Baseline method [3] and our method. Here we fix the 5
classes used for evaluation and experiment with 5 different support images for one of the 5 classes. These support images have different
L2 distances to the mean feature of the class (i.e., ground truth prototype), ranging from 0.5 to 0.7. A smaller value means the support
feature is more representative. As can be seen, the performance of both Meta-Baseline and our method decreases dramatically when the
representativeness of the support sample decreases.

5. Zero-shot Performance
We show the effectiveness of our generated features without any few-shot sample given. In this case, the prototype is

obtained by only taking the mean of the features generated by our VAE models. As shown in Table 3, using our 0-shot
prototypes outperforms the 1-shot prototypes estimated from the real sample.
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Meta-Baseline [3] ProtoNet [16]
1-shot 63.17 ± 0.23 62.39
0-shot with SVAE 66.42 ± 0.22 65.47 ± 0.41
0-shot with R-SVAE 66.76 ± 0.21 69.23 ± 0.39

Table 3. Zero-shot classification accuracy. We construct class prototypes using only generated features from SVAE and R-SVAE. “1-shot”
indicates the performance of the baseline methods in the 1-shot setting using support features.

6. Performance on CIFAR-FS and FC-100
In Table 4, we provide the performance of our method on two additional FSL datasets - CIFAR-FS and FC-100. On these

both datasets, our method improves the Meta-Baseline method by large margins.

Dataset 1-shot 5-shot
Meta-Baseline 64.96 ± 0.51 75.85 ± 0.40
Meta-Baseline + SVAE CIFAR-FS 72.07 ± 0.45 77.18 ± 0.39
Meta-Baseline + R-SVAE 73.25 ± 0.44 78.89 ± 0.37
Meta-Baseline 41.31 ± 0.42 51.84 ± 0.40
Meta-Baseline + SVAE FC-100 45.65 ± 0.40 54.37 ± 0.40
Meta-Baseline + R-SVAE 45.75 ± 0.40 54.44 ± 0.40

Table 4. 1-shot and 5-shot classification accuracy on CIFAR-FS and FC-100.

7. Comparison with methods using semantic information.
In Table 5, we compare our method with the FSL methods using semantics information including TriNet [2], CFA [6],

FSLKT [9], and AM3 [14]. We did not include the results of ProtoComNet since it is under transductive setting.

backbone 1-shot 5-shot
TriNet ResNet18 58.12 ± 1.37 76.92 ± 0.69
CFA ResNet18 58.5 ± 0.8 76.6 ± 0.6
FSLKT ConvNet(128F) 64.42 ± 0.72 74.16 ± 0.56
AM3 ResNet12 65.30 ± 0.49 78.10 ± 0.36
Ours ResNet12 74.84 ± 0.23 83.28 ± 0.40

Table 5. Comparison to prior semantic-based methods on miniImageNet.

8. Ablation study for the sample selection method.
We compare our sample selection method based on Gaussian distribution with other methods including herding [11] and

K-means selection [1] in Table 6. The experiment is conducted on the miniImageNet dataset.

1-shot 5-shot
Baseline 69.96 ± 0.21 79.92 ± 0.16
Herding 72.14 ± 0.20 80.48 ± 0.16
K-means selection 72.31 ± 0.20 80.55 ± 0.16
Ours (Gaussian) 72.79 ± 0.19 80.70 ± 0.16

Table 6. 1-shot and 5-shot classification accuracy on miniImageNet using different clustering methods.

9. Comparison with augmentation-based methods
We show the results of our method in comparison with state-of-the-art augmentation-based methods in Table 7. These

methods include MetaGAN [17], AFHN [8], Delta-Encoder [13], IDeMe-Net [4], MABAS [7] and DC [15].
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backbone 1-shot 5-shot
MetaGAN ResNet18 52.71 ± 0.64 68.63 ± 0.67
AFHN ResNet18 62.38 ± 0.72 78.16 ± 0.56
Delta-Encoder ResNet18 59.90 69.70
IDeMe-Net ResNet10 59.14 ± 0.86 74.63 ± 0.74
MABAS ResNet12 65.08± 0.86 82.70 ± 0.54
DC WRN28 68.57 ± 0.55 82.88 ± 0.42
Ours ResNet12 74.84 ± 0.23 83.28 ± 0.40

Table 7. Comparison to prior augmentation-based methods on miniImageNet.
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